XJTU 实变函数试题(2021级)

杨嘉昱

【题目1】 判断题

- 1. Cantor 集的基数为连续基数
- 2. 可数个闭集的并称为 G_{δ} 集
- 3. 若f单调,那么其不连续点是不可数的
- 4. $E_1, E_2 \in \mathbb{R}^n$ 中不相交的两个集合,则 $m^*(E_1 \cup E_2) = m^*(E_1) + m^*(E_2)$
- 5. 若 A, B 是可测集,则 $A \setminus B$ 不可测
- 6. $\{E_k\}$ 是递减集列,则 $m(\lim E_k) = \lim m(E_k)$
- 7. 若 f 在 E 上连续,则 f 可测
- 8. 设 f_k , $f<+\infty$ a.e. 且 $f_k\to f$ a.e. 那么 f_k 依测度收敛于 f
- 9. $\{f_k\}$ 在 E 上可积,则 $\int_E \liminf f_k \leq \liminf \int_E f_k$
- 10. 若 f 在 [a,b] 上绝对连续,那么 f 在 [a,b] 上几乎处处可微

【题目 2】 $E \neq \mathbb{R}^n$ 上的可测集,证明: $\forall \varepsilon > 0$ 存在开集 G 使得

$$E \subseteq G$$
 $m(G \setminus E) < \varepsilon$.

【题目 3】 $E \in \mathbb{R}^n$ 上的可测集, $m(E) < +\infty$, $f_k \to f$ in measure,g 可测且 $g < +\infty$ a.e. 证明

$$f_k g \to f g$$
 in measure.

【题目 4】 f, f_k 在 E 上非负可积, $f_k \to f$ in measure, 若

$$\lim \int_{F} f_k = \int_{F} f.$$

证明,对于任意 E 的可测子集 e 有

$$\lim \int_{\ell} f_k = \int_{\ell} f.$$

【题目 5】 $E \in \mathbb{R}^n$ 中的可测集, $m(E) < +\infty$, $\{f_k\} \subseteq L(E)$ 并且满足: $\forall \ \varepsilon > 0$, $\exists \ \delta$,若 $m(e) < \delta$ 则

$$\int_{e} |f_n| < \varepsilon, \qquad \forall \ n \in \mathbb{Z}_{>0}$$

证明: 若 $f_k \to f$ in measure,那么

$$\lim \int_{F} f_k = \int_{F} f.$$

【题目 6】 证明在 [a,b] 上的绝对连续函数也是有界变差函数。

【题目 7】 设 $E \to \mathbb{R}^n$ 中的可测集, $1 < p, q < +\infty$, $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$,若 $f \in L^p(E)$, $g \in L^q(E)$,证明

$$||fg||_{L^r(E)} \le ||f||_{L^p(E)} \cdot ||g||_{L^q(E)}.$$