度量空间

文义:X非常集合,称d:X×X→R为X的一个魔若 它满足

· d(x,y)>0 +xy∈x, d(x,y)=0 € x=y

· d 1x, y) = d(y, x) + y, x &x

· d(x,y) < d(4, ≥) + d(x, ≥) + x, y, ≥ ∈x

林 d/x,y)为 x到y的起离, 林 (X,d) 为度野间.

例:X=IRn

d, (x, y) = (\(\int \lambda \text{(x_i-y_i)}^2\) \(\frac{1}{2}\).

delx, y) = Z /xi-yil

约为於上朝度量

例,从为非定集在定义

d(x, y) = { | x + y

別 d 为 X 主的 离散度量.

131), lo = {(xn): sup |xn| < 00}.

d(x,y) = sup |xi-yil +xiye &

定义: 按(X的为度量空间,(Xn) CX, Xo €X 甚

 $\lim_{x \to \infty} d(x_0, x) = 0$

则称(Xn)依度量d 既收敛于X, 记为lim Xn 兰x 定义: 没X为度量完间,ACX,称A有量界苍习XoEX

d(x,x) & M YX &A.

今趣: 表(M)在X中收敛,则极限外唯一, [M)有界.

例: 图中元素收敛台 坐标收敛.

上、只要注意到

 $\sup_{x \in P} |x_i - y_i| \leq d(x, y) \leq \sqrt{n} \sup_{x \in P} |x_i - y_i|$ 其中 $d(x, y) = (Z|x_i - y_i|^2)^{\frac{1}{2}}$ 、

例: ℓ 中元素收敛 ⇔ 生林一致收敛

d (x,y) = Sup 1xj - yil

巷 d(x(h), x)→0 as n→∞.

RII sup 1xin-xi1 to as n > 00

NEN Y NE, OC3 Y (=

sup |x (n) - xi) < E.

⇒ IXin -xil < € ¥ j ≥1 N >N.

例: 九个度量层间取例子.

O lp:(1<p<∞).

 $d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{\frac{1}{p}}.$

@ 100(0) = {u: 10 → R J/W : 627 W M(x) K 00 }.

dixin) = essup 1x -91 .

③. 所有序列空间 (S)= {X: {X1, ... Xn... } 为数列}.

dixy) = 2 = 1 1xj-yj)

文x:(X,d) 为度量空间, 知EX rxx, 论.

B(x0, r) = {x \in X : d(x, x0) < r}

ACX, Xo∈X,若∃rxo使得

B(xor) CA

别称 Xo 为A的内点,A的内点全体记为 A的内部

记A°,差A°=A,例称Abst集、

ACX, xo∈x 卷 ¥ 8x0,

(B(X0, E) \ [x0 }) ∩A ≠ \$

则旅力。为A的栗点.A的全部要点称为A的

写集,记为A'

林AUAI=A为A的闭包、若A=A,称A为闭集

定理:X为度量完间,ACX,xoCX,原

OA dosed & AC=X \ A open.

Q. XO €A ⇔ ∃ (XN) CA, d (XN) XXX >0.

Summary

可分性与完备性.

定义: 设义为度量定间, A, BCX, 旅 A在B中在 稠密基 BCA. 孤 A为疏集(无处稠密集),卷 A 不在X中任何非完开集中稠焓

Remark

①若 A在B中稠敏, 例 ∀ x eis, 习 {xn} c A 使得 xn→ x

②A融製集,別 ¥OCX open, 由ATEO中網 密: O\A ≠ ø,但 A闭,故 O\A open.

⇒ ∃ Xo €0, rxo 使得

B(x0, r) CO \ A

BY A A BIXO, F) = p.

定理: A疏集() 石°=中

Bot、 一 町 A°= p, 故 A中和含任一环' YOCX open, 3 BIXO, NO CO, 但 BIXO, O) 本

故∃x, ∈ Blxs, N)\A, 但A closed,故

日至170 使得

BIXI, EI) C AC

K E= min (E1 , = (10 - d(x0, x1)) , R)

CU

 $B(x_1, \varepsilon) \cap \overline{A} = \phi$

这说明 A 不在 O 中翻裥物。

"⇒"反设 °≠申,则 ∃ BIX,n) CĀ

B(X1, E) C B(x0, 10) C O A

这说明 A在 积 B (xo, n) 中稠密, 矛盾

推论:A 疏集 = A 也为疏采

克义:度量完的X可分甚X有可数相签子具

個、Ro, lr, LP(元) (15Pcm) (5) 可方.

ピ, L° (の) 不可分

Proof . LP = {x: Z|xj|P < to } 75 (1≤ P < to). 05.

72. An = { r= {n}: ried , ri=0 + j > n+1}

W U An = A 可数

∀x∈ lp, 3 ¥ 8xx, 3 N∈Zx 使得

(Sint |xi|P)) & &.

∀ |si €n, ∃ rj ∈ Q 便得

(= 1x;-r;18) + < %.

⇒ \$ r = (r,, ··· rn,0, ···) ∈ A, R.

d(x, r) < E.

⇒ A在l[∞]中稠密

灾理: X为度量空间, B为X不可数弓集, 基气在60-70

Summary

使得 ∀×+y, x,y ∈ B 有 d(x, y) ≥ Eo

別×スガ方.

Bot、反设X可分,则存在稠密。集A,使将人而

¥ x, y ∈ B, x ≠ y A

{3 > (xWx) > (xWE) , A3xWE}

 $\Rightarrow \epsilon_0 \leq d(x_1y_1) \leq d(x_1w_A) + d(y_1w_y) + d(w_x, w_y)$ $\leq \frac{2\epsilon_0}{3} + d(w_x, w_y)$

⇒ Wx≠Wy,故

W: B -> A

X -> WX

为单朝,这说明 #B < #A,矛盾.

定理: em, La不可分

Boot 考虑集合

 $B = \{ x : X = (X_j), X_j = 0 \neq 1 \}.$

则 B与[0,1]等势,从而不可数,相甘以为68

X+9, 有

d(x, y) = sup |xi-yi) =1

故由引理知 ℓ~不可分.

0

0

•

•

9

Summary

意集合 B={[-a,u]n: a ER] 以及 B={XA: A = B}

RIL Card B = Card B = Card IR.

知B C L ((R") 不可数, 并且 为, \$€ B, f+4 则

dif, g) = essup | fix) - gix | =1

梦明)理念(P°(Rn)不可分、

定义:设(Xd)为度量空间, 微(xd)为(Xd)中(Quoling 列素 +(xo), ∃N∈Z50仅得

 $d(X_n, X_m) < \varepsilon \quad \forall n, m \ge N$

命题: Cauchy 列有界.

命题、若 Guoting {xn}有子列 (xn) 拉X中收敛,刷 {xn} 在X 中收敛、

及: $\mathbb{Q}F_{j+1} \subset F_j$ j $\geqslant 1$ \mathbb{Q} diam $(F_j) \rightarrow 0$.

则称{疗}为 X中的测量意.

定理: 设份为度量它间X中的讯集金,别

X克备(→ 31×6X s.t. X 6 AF;

CUE Prot; ⇒ ∀ > > 1 人 取 X; ∈ F; , RI [x] + General 引,事实上: 由 diam (Fi) >0 知: ¥ E>O, ∃N E Bo 便得 diam(Fi) < E ∀ j≥N WAD Y MINZN Xm, Xn E FN =) d(xm, xn) < E # m, n3N ⇒由X 完备 => ∃x, xm → x → VEN, INEZO. XNE BIXED OFN X} ATONE, (X) ∀N >1, {XN}n=N C FN, 收敛 JX 故 x 6 FN = FN (FN closed) ⇒ X € NF; 设 4€ 点片, 刷 4 131. d(x,y) & diam (Fi) -> asj +00 =) d(x, y, =0, 从而 X= y. "=" ¥j31, 令 Fj = {xysk3j 为闭身,且显然 Fj+1 ≥ cFj ∀j ≥1 $\Rightarrow \exists \{x \ x \in \cap F\}$

CUE 证D. 设 (Xn) Country, 则可选取子列使得 d(xhj, Xnj+1) < 2) 含于=B(Xnj, jn),则产为X种 雅, 新且 diam(Fi) -70 ∀ x ∈ Fj +1, d(x, x nj +1) < 1 但d(xnj,xnj+1)< ij,从南 d(x, xh;) < 214 X E Fj 这说明 Fit C Fi Ma {打了为闭集查, ⇒能唯一X∈X 使得 {x} = ∩ F; ⇒ d(x, xm)→0, 故 {x} (本) 有一子列 份數 推出《新饮效 定义:设(Xd)为度量定间, 本ACX 为第一纲朋, 若A可 以表示为可数个政集的并,否则称为第二纲的 定理:完备度量户间为第二纲 M. 分两步来证明. ①设 {9n}为一列桐谷助准, M ∩ On 也树菊. 只專证明∀WCX PM, Wn NOn ≠中町司. ¥xo∈W,∃Yozo便得 BIxo, FO) CW.

Summary

由页=×和 目 X1 ∈ B(x0, 10) ∩ 0, 放由 0, 税 可选及OKN<空使得

 $\overline{B(x_1,r_1)} \subset B(x_0,n) \cap \mathcal{O}_1$ 通过归纳,可从送取 (Xn), [xn]

Socra < Ern

BIXM, rn) C B(XII-1, rn-1) A On.

M面 {B(xn, rn)}カーが闭区间套放到X∈X (x)= n Bixn, m) cwn(non)

⇒ XEWN (∩On) =) ∩On done in X.

②.人为第二约集.

俊 (Xn)为在一一引麻集,厕 (Xn)C)是一到 稠密研,从而 (灰) =X

= UAn C UAn = (n(xn)) = p => U Xn + X.

列聚集

定义:X为度量完间,ACX, A列最,港 A中任何点 列均有收敛分列、

称A紧(的列翼) 若A为列展闭集

例: RT中的有界里

P中 有界 到 别

A列最 => A交影

ACX列果, {xn} CA Gueny, 别 {xn}在A中收敛 故 X 为到繁的度量空间,则 X完备.

克X:设X为度量空间,ACX, ∀E>O,称A有有限 E-网岩 3 (Xi) nE CA 使得

ACUIE B(X), E)

称A完全有界基∀Ex 均有有限 E-网、

定理:完全有界集可分.

Bod、设A完全有界、刷VEXO、A都有有限E-网.

¥ k ≥1, 取 E = /2, 別

ACU , B(x), K)

8 = A.

定理:列紧的度量完间公克备、

对于有穷长打一回,存在 {Xn(知)子到 {Xn(比如)}

双于 Yk>1, 港已选出 {Xn(k)}, 别

Summary

d(xintp), Xin) & d(xintp), yn)+d(yn,xin) E in 70 as h too 定理: X为度量空间, ACX, 则 A 自列紧⇔ A 有有限覆盖性顶. Book → 反设 A不能被有限覆盖、设 Na)a∈1 (Na)a∈1 无有限子覆盖,由 A 自列紧和 A完全有界 对于有穷1-网, 习 yieA, Biy, la)不能被 有限甄克, 对于有穷从一网, 习 yreA, B19k,从) 不能被有限覆盖.故 {yk} CA, 由 A [yk] C [yk] CA ykj -> y asj >00. 南 yeAcU Ax, 放 ヨ x EI y E /x 由人一般充了大利 B19, 1/2) < /a 而 \$kj ->4、故3N71 d(yk;,y) < /k + j > H IR M=Maki, N), A) B(ym, m) c B14, k) c /a

这与Blym,太)不能被有限覆盖矛盾!

亡首先证明 A 为闭集 ¥ XEAC, YyEA 目下y >o 使得(如 ry=为d(xib)) B(x, ry) n B(y, ry)= p => A < UyEA Bly, My) WY ... IN E, Hagmon A & A (U, B(y; , ry;) 麻 B= ハドB(x, 「gr) BI BCAC => A PM => A closed. 再证明 A列策. 设[xm] CA, 若有无穷多 个元素相同,则证华、不妨设 Xn \$/n \$/n \$/n. 友设 [xn] 中不包含1久A 中点为桑运的子列 別 ∀y∈A,∃ 5y>0 使得 (B14, 5y) 1/41) n [xn] = \$ MY ... (1 E NO pma) A 由 A CUB 14, 54;) ⇒ {灬}只有都是多个点、矛盾! 布题: 紧集上的连续函数一数连续 有限维宁间中有界冰集日果集

紧集上芦荟的数可取利最近

CUI

紧集在连续 函数下的像也为紧集 紧集 的闭子某也为紧集。

例:设 $|\xi| , <math>A < \ell p$, M_1 A 列紧的壳要条件 是A在 $\ell p + d$ 月且 $\forall \epsilon > 0$, $\exists n \epsilon \in \mathbb{Z} > 0$ 使智.

Root ⇒ ∀E>O, 四 A 列塞, 有无有穷 冬 网 A C N B (Y⁽ⁿ⁾ , %)

to ∀ XEA

故目前∈20 使得

 $(\sum_{j \in N+1} |y_j|^n)^{\frac{n}{p}} < \frac{5}{2} \quad \forall \ |\in n \leq N$ $\Rightarrow \forall x \in A , \exists y^{(n)}, x \in B(y^{(n)}, E_{\ell})$ $(\sum_{j \in N+1} |x_j|^p)^{\frac{n}{p}} < (\sum_{j \in N+1} |x_j|^n)^{\frac{n}{p}} \cdot y_j^{(n)}|^p)^{\frac{1}{p}}$ $+ (\sum_{j \in N+1} |y_j|^n)^{\frac{n}{p}}.$

Summary

 $A = \{\hat{\chi}_{=}(X_1, \dots X_N) : X = (X_1, \dots X_N, \dots) \in A\}$ 则由 A有界和 A 有界,而 A K 中完全有界有有界的,故 核在有穷 E = G $A \subset \bigcup_{n=1}^{N} B(\hat{\chi}_{(n)}, E)$ 记 $X^{(n)} = (\hat{\chi}_{(n)}, 0, \dots, 0)$ 则 $(X^{(n)})_{n=1}^{M}$ 为 2E - M. (直播验证).

C(

定理、X为最 Hausdorff 空间,则 C(X) 为完备距离空间。 Boot、设 {fn} Gudny ,则 ∀x ∈X |fn|x)-fm|x)|≤||fn-fm||= P(fn +fm) ·*

故 ∀X €X {fn W} Cauchy (C 从市收敛

龙 点点 = fix 下記 fix 连续翻开-fill→0.

VEX JENEZzo 使得

Ufn-fm|| < E ∀ h,m ≥N ∀Xo∈X, 全 U 为Xo全Ft或 i 満菌 ∀ X ∈U

15n(x) - fn (xa) < €.

MÀ YXEU À

 $|f(x) - f(x_0)| \le |f(x)| - f_N(x)| + |f_N(x)| - f_N(x_0)|$

+ | fn(x) - fn(x0) |

≤ 3€.

町 fe C(X).

并且∀N≥N,XEX有

|fnx)-fix)| < lim |fnx)-fmx1

< limsup 11fn-full E.

⇒ 11fn-f11+0.故((X)完备.

Summary

定义、投界 C X , 称 界 为等度连续的 , 巷 ∀ 620,

Itfil ≤moll fill + \$3

炀 乎 有界、

|f(x) - f(y)| < |f(x) - f(x)| + |f(x) - f(y)|
+ |f(x) - f(y)|

< 211f-fill+ Hiw-filv) < E.

CUE

故 乎 等度连续.

(fi(x), -- fi(x)))} →

x x ∈ B(x; , ½)

> +1fix)-fix1 < 秀+多の+ 系=E

故乎列最.

Summary

Banach 压缩 映像原理.

定X: 设(X,d) 度量空间, $森T: X \to X$ 压缩 映射 书存在 $0 < \theta < 1$ 使得

dcix, Tyl & Od(x,y) \ X, yeX

命嚴:压缩映射-定连续.

TK压缩, T不一定压缩.

定理: X为完备度量空间, T为X上压映映射,压缩 私数为以,则T在X中存在唯一不动点X*

i.e. $Tx^* = x^*$

进一步,∀x∈X,令xn+i=Jxn,则 d(x,xn)≤产x d(x,xo)

Prot. 构造序列· VXEX, Xo=X

TXn = Xn+1 V n 30.

M & (FXXn, Xn+)

→ Vn.p21有

 $d(X_{n+p}, X_n) \leq \sum_{k=1}^{p} d(X_{n+k-1}, X_{n+k})$ $\leq \sum_{k=1}^{p} \chi^{n+k-1} d(X_0, X_1)$

< 1-4 d(x0, X1)

从而 {Xn} (auony, 由 X 完备和 (Xn) 收敛

CUE

故存在XEX 使得

 $x_n \rightarrow x^*$

由T连续 Ny Txn = Xn+1 和

 $T_X^* = X^*$

故X*为丁的不动点、设X*,X**构为丁的不动。它,则

£9(xx,xxx) € 80 (xx,xxx)

⇒) d(x*, x**) =0 ⇒ x*= x**, 即不动点唯一.

定理:X完备,T:X→X,甚∃凡>41,Tⁿ为压缩映射,

则下存在唯一不动点.

Prof、由Tn为压缩映射和下有唯一不动意记为x, M

 $T^h x = x$

=> Tn+ x=x => Tn(Tx)=Tx

→由唯· Tx=x

从而X也为T的不动点、

後1也为了的不动点, 町 丁川川

Tny = Tn+y = Tn-2y = ... = 4

但下不动、点唯一,故卡X、断下不动点唯一、

例: 设fec(to,17), YXER, 为程.

p(t) = A stet-s p(s) ds + f(t)

求证:存在唯一连货解.

pit) = 150 ets pisods + fins Prof. CUE ⇒ phoe-€ = > Sot e-Sp(s) ds + fitient ⇔ p(+) = > (5t p(s) ds + g(+)) 花To(t) = イ「t p(s) ds 174-TY1 < 121 5t 1 \$(5) -4(5) ds. ≤ WIT 11 \$-711 172 p-724 5 121 50 17p-74 ds & IN' St St dx dx 114-411 € 121° ± 110-41 1/TM-TM41 = HIM to 11 \$-7611. 由于 长 →0 数存在 no EZzo使得长() 从而Tho为压缩映射,故了有唯一不动点。

龙洲绿

定理:住何度量空间均存在完备化空间、 Part. 令 B = {(Xn):(Xn)为 X 中的(auchy 初)}.

(Yup)为等距同构的、

定义等价关系

(xn)~ (yn) ← him d(xn, yn) =0

由于

 $d(x_n, x_n) \leq d(x_n, x_n) + d(x_n, y_n) + d(y_n, y_n)$ $\Rightarrow |d(x_n, y_n)| \leq d(x_n, x_n) + d(x_n, y_n)$ 由疑 $\{x_n\}, \{y_n\} + auchy b | x_n \in \{d(x_n, y_n)\}$ 也有 $\{auchy \}, \{x_n\}, \|x_n\| \|$

"~"为 器上的等价关系 定义映射: T: X→ Yi Q. Xxx YI = X @ X~4, y~Z => X~Z $P(x^*, y^*) = \lim_{x \to \infty} d(x, y) = d(x, y)$ 3 x~y => y~x 从而了为零距映射并且时的构造和了为满彩的 显然、定义等商贷 丁为等距同构 Y= 25/~ = { [(xn)]: {xn} (auchy } ¥ (長間) 100 おド中的 (auchy 3) 丫完备. 定义: $p: \Upsilon \times \Upsilon \longrightarrow IR$. 由片在上中稠密般, VK31, 存在 XKEX使得 ({xh}, (yh)) -> him d(xh, xh) p({\(\varepsilon^{(k)}\)}, \(\chi^*\) < \(\chi\). 老 (\$ ~ (Xn) , { yn } ~ { ŷn' }, 即由 从面 d(xk, Xl)=p(xx*, Xl*) 验证户台理性、 $|d(x_n, y_n^{\bullet}) - d(y_n^{\bullet}, y_n^{\bullet})| \leq d(x_n, y_n^{\bullet}) + d(y_n, y_n^{\bullet})$ < p(xx, (xx))+p(xx, (xx)) 72 him (d (xn, xn) - d (xn'r /n')) =0 + p(((E))+, pe((E))) 即户 的龙义合理. < ++++ P((E(N), (E(R))) 7 易证p为Y上的一个度量、 as k, l > 00 从而(Y, p)为度量空间. 7 这按明 {Xn} 在X中 Cauchy,故教(Xn)所在 ∀XEX, 图 {x,x,... } to X上的一个Gooding 31) TI = Y 等价类. 记其所在的等价类为 X*,记. $\rho(\{\widehat{\xi_n^{(m)}}\}, \{\widehat{x_n}\}) \leqslant \rho(\{\widehat{x_n^{(m)}}\}, \widehat{x_m}) + \rho(\widehat{x_m}, \{\widehat{x_n}\})$ $Y_1 = \{x^* : x \in X\}.$) < m + lim d(xm, xn) →0 別 → {Xn} ∈Y. 由 {xn}为 Guichy 3/ 未2: as m-100 p((xn), xx) = lim d(xn, xx) -> 0 as k -> 00 从面(高門) → (人), 这说明(下户)完备。 Min Yi 在丫中稠密、 定理:完备化空间在等配 同构意义下唯一、

Box. 後(Y,P1),(Y,P2)为(Xd)的完备化空间,则

 $T_1: X \to Y_1$ $T_2: X \to Y_2$

为等座同构 ⇒ T5T17: Y1 → Y2

为等距周构

 $P_2(\widehat{T} \times \widehat{T} y) = \lim_{n \to \infty} P_2(\widehat{T} \times n, T y_n)$ = lim $P_1(\widehat{T} \times n, y_n)$

= 91 (x, y)

CHE

CI

9

名「IIAMII)をC中Carcha , 从雨有界 記 limang IIAMII >M. 芝敬、

定义:设X为C上的链控间,老小11:X→水满足

- ① ||X||>0 ∀X€X, ||X||-0€) X=0
- @ ||WXII = |WI. |IXII # XEC, XEX
 - 3 1/x+y)(< 1/x11+11y11 +x, y \in x

则都们为X上的一个范数, 本(X,1111)为赋艺线性空间.

半克狼: $\int P(xx) = |x|P(x) \quad \forall x \in \mathbb{R}_{>0} \quad x \in X$ $\left\{ P(x+y) \leq P(x) + P(y) \right\}$

定义: 设川,川, 为X上的2个范数,若

 $||x_n||_1 \rightarrow 0 = ||x_n||_2 \rightarrow 0$

则裕 || 1| 1| 3萬寸 || 1| 1|2、岩仕何一个强于另一个,刚称两个范数等价、

定理:设州,小川为 X上2个范数,则川小端于川上台 3 C∞ 使得

1|x||2 € C ||x||, Y x ∈X

Bot ~ 是显然的

"一": 反设令题不成立,则 ∀n∈ Z∞ ∃ Xn ∈X 使得

||Xn||2 > n ||Xn||, 不好選 ||Xn||2=|

Summary

1 > n || Xn ||

则 ||Xu|| → 0 但 ||Xu||2=1 , 矛盾!

推定: 从上2个范蠡 11/11、专11/16年价 ← ヨC1,62×

C1 || XII, & || X||2 & C2 || X || 1

· 有穷维赋艺线性空间的刻画

引理, 沒{ej}; 为X中几个线性无关的元素,则习从20

μ I |αj | ≤ || I αj ej || Vacc". 使得

Prot 若 以=0,则显然成立、下设 以 +0,别 ZKil +0,数

μΣ |dj | ≤ || Z dj eill

₩ ≤ || Z \(\frac{\alpha_j}{\subseteq}\) ej||

記 Bj= 以/ [以] , 川 [1] | 大 [Bj] =1. 考虑集合

S = { x \in (" : \(\S | \xi| = | \)}

MS为Crif有界闭集,从而为累集.又设

f(x) = || \(\int \text{x}_j \, \end{align*

Ifixi-figil ≤ ZIxj-yil llej1

< max ||ej|| - \(\sime\) |xj-yi|

故 f连续, 故 f在S上能取得最小值 M, 设

f(x*) = 4

由于{ej}线性无关,故从的自X*=0而X*68

知 {IIAn||}在C中Cauchy,从隔有界,记.limang |IAn|| >M

故以70,从而

定理:有穷维赋苑线性空泪住意2十苑教等价

Bot.设川为X任真老数,则由引进若{ej}为X的

-组基, +xex, 习(x)

x= \(\bar{Z}\) x; e;

Win ZIXjI ≤ ||X|| ≤ max||ej||. ZX;

即 |1·11,:X→ Z|X;1 与|1·11新, 即X中任-

芜数均与11/1、等价

推论:任意一个有穷维赋范线性空间专①* 拓朴等同肚,

代数周构、从而可分, 完备

引理(Riesz's Lemma)设 Y为烟茗线性空鸟间的闭子空间

且 T+X,则 ∀EE (O,1), ∃ X ∈ X\Y 使得

11/11=1, dst(x, Y) > E.

Boxt. YUEXIY, to.

d = dist (u, Y) = inf ||u-v||

PUI YE的の、ヨザモド使得

d & Ilu-WI & d/E

10 x = 4-2 , 75

dist(x, Y) = inf 11 11 - 411 4 = 114-111 d = > E.

Summary

1/2 /X = 11 = X 5 6 11

定理: 好性關芝空间 X 有限组《单仓球面》 紧 But.若 X 有限维,则单位球圆有界,从而列署.

若X无限能,M可选出一列X的有限维子空间(Xn)

XM &Xn. Vn >1.

故 Y N>1, 3 Xn ∈ Xn,

|Xml=1, dist(xn, Xn)≥ ±

这说明 [M] C BX 且

11 Mm - Mn11 72 V m +n

从而 (Min) 不可能有收斂子列,从而不列展. 口

7

3

3

Hahr Banach 定理

定X:X,Y为C上的赋艺线性定词,P为X的结准子宜 间, T:D → Y 为有界线也算子, 巷

知 [IIAnl]在C中 Cauchy,从两有界,记 limsup |IAnl] =M.

O T(xx+By) = aTim+BTy, Yapet, xyeD

XII XII M > YIIXTII OK ME Q

定理:设X,Y为赋艺线性评定间,D为于空间,T:20>Y 为对性算子、则 7到 性质等价。

@了在口中某一点连续

图 T在D中任何一点连续。

Prof. D = O 显然

○→Ø,设T在加外连续、到∀x∈D,全xn→X $M(||Tx_n - Tx|| = ||T(x_n - x + x_0) - Tx_0|| \rightarrow 0$ 故T在X处连续

3>11XT11 (= 3 >11 # X11 故川丁益至川日 → IITXII < 3 IXI Y XED

①. 丁有界

③ →①、由于「在の外蓝领、故 ∀ €70, ∃ 5 70

即丁有界、

定义: 设义, Y 为 C 上 的 赋范统性空间, 记是(X Y) 为所有 X 到 Y的有界线性算子构成的集合, 定 X 其上的起数为

若 Y = X, 记 是(x,x) = 文(x)

若Y=C,记义(X,C)=X*,X的对偶空间.

定理: XY为C上角赋范线性空间, 则

L(X, Y) Banach 空间 ← Y Y Banach 空间.

Prof. "←"D定义 A.

茂 (An) 为 d (X, Y) 上的 Couchy 311, M 4x 6x

11 Anx-Amx11 < 11 An - Am/1 1/1 XI.

⇒ {Anx} 为 丫上 的 Quoday 列, 由Y克易和其收敛 记版限为 Ax.

@ 验证A的合理性.

YOUBEC, X, YEX, ₹

A (ax+By) = lim An(ax+By) = a lim An x + flim Any
= & Ax+ BAy

由 {An} Gurchy及

11 An1- 1/Amil | 11 An - Amil

知 {||An||}在C中Guichy,从隔有界,记 limang ||An|| >M.

N ∀<∈X

||AX|| = lim ||AnX|) < timep||An || ||X|| = M ||X||

故独上: A € L(X,Y)

③验证An→Am L(X,Y)

事实上,由{An}在是(X, Y)中Guanty to

= lim ||An-Am|| >0 as n>00

编上: 上(X, Y)完备即为 Banach space.

引理: (Zorn's Lemma)设 X 为一个半序集, 巷 它的每一个全序子集均有上界, 例 X 有极大元.

P(1x) = 2 p(x), + 2>0, x ∈ X

OP(x+y) < PIN+P(y) \ X, Y \ X

若了物下上的实线性泛函且满足 fial ≤ P(x) ∀x∈ Y, 剛 右在 X上的实线性泛函 F s.+.

0 F(x) = fix) \ \x er.

@ FLOS PLA) YXEX.

WE Boof 定义集仓

第 = { h: p(h) < X→R: h 発 記 3 h b y < p(u) ∀ x ∈ p(h) h 为 ± + 从 的

在野上定义产关系如下:

 $h(x+tx_0) = f(x) + tx$ $\forall x+tx_0 \in D(h)$ 其中 以待定,则 $h \in \mathcal{F}$ 父票 $h(x) \leq f(x) \; \forall x \in P(h)$ 而由 $f(x) \in \mathcal{F}$ 你就是我们,

Summary

he年,这与from极大元素盾。

定理(Hahn-Bannech)授X为复结性空间,Y为X标栏子空间 P为X上的一个半范数,老等为定义在下上的线性泛 函且满足IInol≤Puo,→×∈下,则存在定义在X上的 线性泛函 f 使得

O fu = Ju Yxer

@ Ifwils Plan HXEY

时.特X, Y看成实线性空间, 记.

Jo (x) = Re f(x) ∀ x ∈ Y.

All Jo(x) ≤ |J(x)| ≤ P(x) ∀ x ∈ Y.

由 Hahn - Banach 定理知, ∃ fo ∈ X*使得

 $f_0(x) = f_0(x) \quad \forall x \in X^T$. $f_0(x) \leq f(x) \quad \forall x \in X$

 $\Re f(x) = f_0(x) - i f_0(ix) \forall x \in X$

 $f(x) = f_0(x) - i f_0(ix)$

 $= g_0(x) - i g_0(ix)$

= Regix)+i Imgn = qui

9w, ∀x∈ Y

A fix) = fo(ix) - i fo(-x)

= i(fo(x)-ifo(ix))=ifix) \x ex

即于有复齐次性, 并且 Yxex, 30, fw=1fw|ei0

An $|f(x)| = f(x)e^{-i\theta} = f(x)e^{i\theta}$ fo (1/20) = XII XIII YXX0 E T = fo(xeit) & p(xeit) 以及工艺友,故由 Hahn-Banach 知, ヨf∈ Xx 使得 $\in P(x) \quad \forall x \in X.$ 11911 = 11911 = SAP 1/12x0/1 =1 定理(Hahn-Banach)授X 为赋艺线性应问, Y为X的子 # f(x0) = fo(x0) = ||X0|| 空间, f, ∈ Y*, 则∃f ∈ X* 使得 推论: 设 X为线性赋艺空间,Y为 X 闰子空间,XoEX\Y $\emptyset f(x) = f_0(x) \quad \forall x \in Y.$ 则存在fex*,使得 @ ||f|| = ||fo|| 0 f(Y) = {o} 称 f 为 fo 的保艺延拓. @. 11f11 =1 Brof. 全P(x)= Hfoll·llx1) ∀x ∈X, MIPAX 3. f(xv = d = dist(xo, Y) 70. 上的半范徽、并且 Boof、定义 X的子它间 Z= Y+ Span (x) 及莫上的线性关系 fo(x) & P(x) & x & Y. 由Hahn-Banach 定理,存在f 15 (X++X) = |+d | fix = fox +x ex < | t | 1 x + x | | = | | x + t x | | fix, ≤ lifil lixil \$x ∈ X. => |Ifoll El, 由Hahn Banash 定理,可将后供整起拓至X上 => ||f|| ≤ ||fa||, x 记为方, 网 于满足 00, 刚 11511=115011三1 11 fo 11 = sup folx) < sup f(x) = 11 f11 又由 d=dis+(x,,Y) te, 3(xn) 故 ||fo|| = ||f|| 4n €Zbo 推论: 设入为赋范线性空间, Xo≠o, NI ∃f∈X* such d < 11 xo-XhII < d+ to d= f(x) = f(xo-xn) < 11 fl 11xo-xn11 that ||f||=|, $f(x)=||x_0||$. Buf、惹X的结性子空间 Y= { \(\lambda\xi\):\\\ \rightarrow \(\Omega\)} < 11 fil (d+x) 左Ma周得1月11日. Summary

TOUE 推注:该[ej] n. 纤维无光,则存在{fi}, cx*便 $f_i(e_i) = \delta i_j$

> Book. ₹2 Xn = span {e1, ... ei4, ei4, ... en} 则由摆上一个个起 3fi €X*使得

> > fi(Xi)=0

By file; = Sij.

定理:设行门高线性天关(CX*),则存在{e}}in CX便

 $fi(e_{\overline{i}}) = \delta i_{\overline{i}}$ Boof、考虑 Rn 的子空间

Fr = {(fi(x), ... fn (w) ; x ∈ X}.

断言: 乎= Rn, 若不然, 存在 Xo ∈ Rn使得

Xo \$ ₹.

但罗为RM的结性子的(有限维)、故目《eRM

由 ① As. Z. xifix) =0 Yxex 与(fi) 练性无关矛盾!

引理:设义为赋艺线性空间,入*为美对偶定间,{fi}:篇CX+ O Karfic Kar Jo BILZ = of, DOSINEIM

bot 考虑 RM 的闭子空间

\$ = {(f. w.f. w. -, f. n n) } x \in X}

M 全 fiw=o cleien 即 Xe fikerfic Karfo 那么 fo(x)=0, 故知(1,0,…,o) 年 外 从而日入GRAH

使得 (人。fola) + I. lifi(x) =0. 1 No = dist (Xo, 497) 70

MA & XI = - 10 , RM fo = Z difi

Prof.当n=1 科, 老X= kmf,, rul f, = fo=0, 下设 Kanf, +X.

刷 ∀ Xo ∈ X/ Kanfi, fi(xo) +0,故 ∀ x ∈ X,有

X- fi(xx) \$xo Exmfickmfo

 $\Rightarrow f_0(x) = \frac{f_0(x_0)}{f_1(x_0)} f_1(x) \quad \forall \ x \in X.$

後 N= K-1 財成主, 從 N= K, 別

Akersi = Akersin Kersin = A korsilkonsi C Kar(fo Karfk)

由归纳假设, 3(Ai) 使得

Summary

え(x) = Z λifi(x) → x E kar f_K Min Kar f_k C 序 Kar (f₀ - Z λifi) 故存在 λ_K 使得

Ans = fo- Edif; 定理: 資金is CX*线性話, 则 の 3 {er} CX 、 fi(es) = 8 ij の X = gran {ei} in 田 (Ai kmfi) Mot. の由到理及{fi} 线性无线症:

M南 3 Xie kar(A karfi) \ karfi
故意 ei = Xi/fi(Xi), 剛
fi(6)) = fij

X3X X E由.@

 $X = \sum f(wei) + (x - \sum f(wei))$ $f_{j}(x - \sum f(xei)) = f_{j}(w - \sum f(wei)) = f_{j}(w - \sum f(wei)) = f_{j}(w - \sum f(wei)) = f_{j}(wei)$ $X - \sum f(wei) \in f_{j}(wei) = f_{j}(wei)$ $X + \sum f(wei) = f_{j}(wei) = f_{j}(wei)$ $X + \sum f(wei) = f_{j}(wei) = f_{j}(wei)$ $X = \sum f(wei) = f_{j}(wei) = f_{j}(wei)$

Summary

数 f(fin) = 1, $||fin)|| < \pi$. $& \text{ & Mod } f(fin) - \frac{x_1}{fin}) = 0$ $& \text{ & } \frac{x_1}{fin} - \frac{x_1}{fin} \rightarrow \frac{x_1}{fin} \notin \text{ Ken } f$ ② $& \text{ & } e = \text{ Xo}/f(x_0)$, $||fin)|| \forall \text{ X } \in \text{ X}$ & X = f(x)e + (x - fin)e)

€ span(xo) ⊕ Kenf.

推论:设义为线性烟港空间,广为X的有限维子空间,则有在X的闭子空间飞 Such than

X=Y T.

Summary

つつ

)

)

0

定义液义为实线性空间,积分的线性子空间下为极大 的,若任何以上为真子集的线性子空间都有 $Y_1 = X$

引理: 设义为实线性空间, Y为X极大线性子空间(平) Y为X真子空间且∀Xo∈X\Y, X=qqan {xo;@Y. Prof "⇒"由于 Y⊊ span {xo}⊕Y,故由极大舒

性子空间的定义和 Pan(xo)图下=X. "世"设 Z为以 Y为真)瓖断线性强间,则

₩X6 EZ \YC X\Y

有 span (xo) 田 C Z

(B Span (xo) 田)=X, 故 X=Z

即Y为X的极大结性子空间.

定义、设义为实生性子空间,广为X核大纬性子空间 Xo∈X\Y,称 L=Xo+Y为X中的极大流形, 简称起平面

(闭) 超平面 台非壓角的 结性发函于及下队例

L= 4f = { x : f(x) =r} 使得

Prof. " + xo E Hf, fixa =r.

∀x ∈ Hf, X-Xo ∈ Karf =>X ∈ Xo + Karf

3

7

7

7

3

7

3

7

3

3

7

3 7

3 7 而由引理,Kerf 显然是极大真子空间,从而 Hf = Xo + Karf

"→"设 L= Xo + Y. 其中下为极大真子空间,则 X = Span [xo] & Y.

令 $f(\lambda x_0 + y) = \lambda$

M f(Xo) = 1,从而

L= {x: f(x)=1} = Hf

定义: 林集合 E 在遇早面 L= Hf 的一例若

SWER (Sr) YXEE.

和超平面 L= HF 与离 E与 F老

fixer = fig) \times \times E, y \in F

若上述不等式严格成立,则称上严格分离 E 与 F. 史义:设E为线性空间X中的凸集,以o为内点,定义

PEW = inf (x70: XXTEE)

称尼为由E就导出的Minkoswski 冷函,则后有以下性质

Q. PE(XX) = X P(X) YXXO, XEX

Q. PE(X+y) < PE IN +PEIY) Y XI Y EX

Prot. O. & PE(XX) = inf (X >0: XX/x EE)

= inf (% lax x): X/x EE = > PE(x)

定理: 设石, E2 为实结性 空间中非空凸集, E1有內 ②由作以前文, ∀€70, ヨム, ルスつ 点,刚在在那里面上分薄日寺玉。 PELO > 2- E , PEIY) > 2- E. Prof. 设 E=E-Es= {U-Z: YEE, , Z €Es} 刚 E 凸, @ XXI E E YXEE EIn Ez =中駅 Ei-Ez >0,(高 E)有內主,被目別知的 Xth = X Ath + 1 Ath EE c Ei,故 Y y E Ez 故 E(X+y) & A1+ Ack PE(X) +PE(Y) +QE. B(x0,8)-4 C E1-E2 = E 定理: 设 E 为实线性赋范 空间 X 中 以 O 为内底的真凸子 从而 E 也有内主,从而存在 f e X*, 「+o 使得 其, xo垂E, 则存在一个闭起平面 L 分离知 与 E f(x) ≤ r ≤ f(s) = 0 \ x ∈ E) **即**∃fex* 及 r ≠0 =) fig) & fiz) + yeE, . Z e E, fixi≤r≤fix> Vx∈E. 7 取 x ∈ [smp fld), smp flz)] frof. ∀x∈E, 由于 X/1∈E,故 7 刷 L= H章 分爲 Ei与Ea、 16 (x) >0: X/2 (E) 推论:设 E, E, 为实购违线性空间 X 中的非空凸集, E.有 从而尼(x) ≤ 1,并且显然有尼(x) 31· 7 内底,若巨。八巨三大则存在程于面上分离巨小龙。 考虑 X 的结性子空间 No = { \(\lambda\) xo: \(\lambda\) RP} | YX 7 # 06E° ,380. Proof、只要注意到 E°=E 其上的泛图 BIO, S) ⊂ E 定理(Ascali) 设E为实赋艺结准定间X中的闭凸某, Xo 电E focusi = A P(x0) ⇒ ¥ X ∈ X 7 P(X, 5) 51 MafeX*, delR 使得 $f_n(x) \leq f(x) \quad \forall x \in X_0.$ 7 =) PIK = IWI fix) < & < fix) \ \times x \in E. 由Hahr-Banach 定理 ∃f∈XX 从而fo有界. 100f.由于 Xo 4 E, E闭桌,故 35 xo 使得 $f(x_0) = f_0(x_0) = f(x_0) \ge 1$ 3 fix) & PIN & I YXEE. B(x0,8) C EC 7 从办美[f=1]分离(x)与E. 故目fext, x>o使得 7 3 Summary Summary 7

7

CUE Jul & d & fig. & XEE, y & BIXO, S) Min fix) < d+ oz < fix) 定义以不下为练性流形,若下为某个了空间不对何置 Xo ∈ X \ Xo 的平移 F = xo + Xo 定理:及E为实练性断范空间X中含有内点的闭凸集, F为X中一个线性流形,若E°NF=中,则存在一 个包含F的起平面L=Hf,使得E在L的一侧。 Brof 易拉下巴,而EB且有内点,故存在fex*及reik 使得 fux < r < fly) \x x \in K, y \in E 而 F= xo+ Xo. 故 $f(x_0+y) \le r \Rightarrow f(y) \le r - f(x_0)$ 不 Xa 为线性子空间, 故 fly) =0 + y EX 从과 VXEF有 fix) = fixx) 从示 F C Hf A Y Y E E fly) >r >f(x0) 故臣在上一例. 定义:承起平面上为凸集E在Xo外的承拍起平面, 老 E在 L-M 且∃Xo ∈ EnL. i.e. fco & r = f(xo) \ \times x \in E.

例: 卷 E= {x: ||x||<r}, ||x||=r 70, 则存在E在 xo 处 的承托起平面 Book . * Xxx E xx +0, 3 fexx , 11f11=1, f(xx)=r = 1/xx1) +x∈E, 154,1 ≤ ||f||||x|| € ||x|| + <r=f(x0). 例设E为实赋范结准空间人中有内点的凸集,则∀xebE 都可作一个承托起平面 Brof. Yxo E EIEO, EO (Xo) = \$ 注意到 {Xo} = Xo + O. 故目feX* {xo}cHfix=LE在L另一帧,即 ¥x∈E. fixis fixo 定理(Hahn - Banach 九河形式)甚定赋芨线性空间×中纬性元 形下与方球长不相交,则在包含下的超平面与长不交 Prof.不妨後 K= (x: ||x||<1], F= xo+X。 由下八十二十五日 $||x_0 + x|| \ge 1$ $\forall x \in X_0$ 从而 dist (xo, Xo) >1,由Hahn-Banach 定理知:目代对 使得「JCN=O V XEXO f(x0) = dist (x0, X1) ≥1

> FCHf=H, |fw| slifllix11 & fixo, + xEK

MAP ITHIXX = SWP ITWI = 11911 CUE MAD KNH=P. 2-36 ITTIX = ST | FW > SUP | FW = ITI 定理:Hahn-Banach 定理几何形式 与解析形式. Mar IIFII= IIFII Boof to k = {xer: ||x||<1}, fer* G= {xer : fix=lighty} = Xo + Kmf 为结性流形 M YX CK 有 1 fix 1 < 11f11.11X11 < 11f1 0 从而 GAK=中, 由Hahn-Bomach定理仍何形式充 0 在在H=U=c]使得GCH, HNK= 0 車 0 ∈ k 和 0 ¢ H ⇒ c 丸, 故を c=||f|| 0 **断**这个及私介 0 0 F/r=f. 0 ∀xe T, 老fw=a≠0, M f(益·lfin)=llfin => & lifie GCH => F(&lifi)=lifi=> F19-a 老 fw=a=0, RI YXOEG, X+XOEGCH => F(x+x0) = 11f11 => f(x)=0. @ 1171x = 1191xx. VXEK,若FUNNIFII,则開刻,从市 おKnH=中矛盾故 Yxek, FH>< IIfi Summary Summary

CUE	L AND PROPERTY.	11,	CUE Lebesque 空间上的交函表示
			灾难: 没1 <p,9<00, +="" e8<="" f∈(p)*,="" m="" p+="1," th="" ∃!ce=""></p,9<00,>
			$f(x) = \sum C(x)$ $\forall x \in \ell^2$
			且 fil = C .反之任绐 C 6 e ^Q 全
			$f\omega = \Sigma cixi$ $\forall x \in \ell^p$
))	MI f∈(ℓP)*, 定×
))	T: (2°)* > 28
))	f → c
))	别丁为保艺周构、
))	Broof. 全ej为eP中标准正交基,全 lij = f(ej). 我们来证明
))	(四) 目为所求的 & 中元濂.
))	Ollula < 1151 => u e 19
)	∀x∈ep, X = Zx; e; , MI ∀N ≥ 1
		,	$f(\Sigma_i^N x_j e_j) = \Sigma_i^N x_j u_j \leq \ f\ \cdot (\Sigma_i^N k_j)^{\frac{1}{p}}$
			取 xi = 14j1 9-2· Uj, 别
			In 10319 < 11511 · (27 10314) 9
		3 3	R (Z ! luj19) + € 11511
) 3	全N→0 绍 IINIbo < IIJII
)	Ef us eq
) 3	@ fix)=Zujxj and IIf II = lullq
Summary		0	Summary
		0	
		0 0	
		0 0	
		0	

YXELP, BUEL * X Z XIUI & IIX/19 ||ully < 00 故由于相连统住性经由和 f(x) = f(Zxiei) = Zxiui 并且 1分1 ≥ 1×11p liulle 从而1511=114119. 唯一性显然. 定理:设 |< P, 9<∞, p+ =1, M + f∈(1P(a,b))*, ∃! y €19(0,6) 使得 1x) fix) = Sa x +1 y +1 dt Vx ELPlais) 1大及 11511 = 11911 反之 & y E L (a, b), 定义 fix) = Sob XI+) y+) d+ RII fe(19(a,b))*,定义T:(19(a,b))* > 19(a,b):f > 5 RIT 为保艺周构、 Broof O保港及唯一性、 首先设的成立,则由 15(x) 1 < | | X/1p | 14/19 知11f11≤11 yllq, 另一方面, 由 ye L^q和取X=14 有 f(x) = 501418 dt WE 11×11p = (So 1419d+) = < 00 从开 f(前p) = 11914 < 11f11.

7

从而11511=11911g. 若 91, Y2 EL9 满足 51x = Syx = Syx S (y, - 42) x =0 取 X= | Y1-Y2| 12 (4-42), 刷月 114, 4elly=0 => 41=42. ②. 4 雕在性、上绝难续 设Y(t) = f(Xca,ts), 世们来证明Y绝对在设 从而为一个的方式们所来。 ¥ {(ai,bi)} The [aib] 中不相交的区间,记 Xj(\$) = 7((aj,bj)(5) Bi = arg f(Ai) $|\beta| \quad |f(x_j)| = |f(x_j)| e^{-i\theta_j} = f(x_j e^{-i\theta_j})$ ルネ エハト(bj)- tiaj) = En 1f(xj) | $= \sum_{i=1}^{N} f(x_{i}e^{-i\theta_{i}}) = f(\sum_{i=1}^{N} a_{i}e^{-i\theta_{i}})$ < 11511 (Sa 121% e-10;17) 1. < | If | (\frac{N}{r} (b_3 - a_3)) \frac{1}{p}. 故Y(+)绝对连续,故由微视与基本定理和 ∃y∈L' y = Y' a.e. , YIt) - YID) = Sab y N(a+) ds 8)对特征函数及简单函数. ¥ (c,a) < (a,b) f(x(co)) = Yld)-Ylo = Sa yx(co) ds.

1000000000000000000000000000000000000			
CUE 故由视历及于的维性性,对扩任黄南简率图影响	1) 0	CUE	VXELP, To Xn = A. XEn, MI
f(A) = Sab xy	1) 0		$ x_n-x _p \rightarrow 0 \Rightarrow f(x_n) \rightarrow f(x)$
母有界函数.	0 0		新聞 「な (xnxx)y) < xn-x11·11/4 →0.
对于台东的有界可测函数户,由简单函数通进	0)		Wife f(x) = Soxy
定理, 3 {Þ;} 简单函数	0 0		练上, 有题得证.
0 ≤ \$1 ≤ \$1 = ≤ \$1, \$7, > \$ uniformly	0		定理: 没以为赋艺线性空间, 老人可分, 则人可分。
Map 11+j-+11p →0.	D 0		Prof.由X可分和, 3 {1/1} 使得
故 $f(r) \rightarrow f(r)$.	3) 0		{9,}00 = X*
并由 \$i\$1 ≤ \$y 及 Lebesgne 控制收敛交理	3)		由苑数定义和, ∀1731, ∃ Xn ∈ X 满足
S piy -> Spy	3)	/4	gn(xn) > ± 11gn11 , 11xn11 =1.
从而 方的 = 5岁 女 有界	3)		刷 Y= span {Xn} 可分. 断言: Y=X, 事实上,仓
B 4 EL9	9		f∈X* 满足
サn∈Z20 記 En={t: 191+1 ≤n}, 由	3		f(2) =0 ∀ X ∈ Y
Spy = 5(p) = 11511.11\$11			则由[sin] =X*知, VEX, IN 使得
≤ p = 19162. y χε, χε	3		115-9~11< 8.
SEN 1418) & < 11511	3		1 3n(xu) = <9n-5/xu> ≥ ±119/11
de Fator 5) IZ	3		故 f ≤ f-9 + gn ≤ E+ 2<9n-f, >n>
(S& 1418) \$ \le limits (SEn 1419) \$ \le 1151)	3		< € + 2119N- f11.11X411 = 3 E.
RT 119119 < 11511,从南 yEL8.	3		Min 11 files => f =0.
OXI XELP.	3		
@.v.1, v.ss.	3	Summary	
Summary	3	Julinary	
	3		

自反定间 定义:设义为赋范结性定间, X*为x 的对偶空间, 花(X*)* 为X的二次对偶, 记为X** VXCX, 定义 < IX, f> =< f, x> ∀feX* III < IX, af+p\$> = < af+p\$, x> = a <f,x>+p<9,>></f,x>
= << 下, f> ↑ PCJx , g>
ary

CUE	<1,5> = < f, u> +fe(L2)*	CUE	m1 17511 < 11511
	断可、∀f∈(LP)*, ∃Yf∈ L®便得		从而 T e L (X*, X*) , 刷 T* Z= Z e X**
	<f, v=""> = Say v + vel. 1)</f,>		由 X 的 和, 3 X E X 使得
	记 (LP)* → L® 陷等旋周构为了, 即.		< = , f > = < f, x> + f ∈ X*
	T: (LP) * >> L8		概言: X ∈ Xo, 若不然 X 年Xo 由 Xo 问及 Hahn - Banach和 ヨデモハ
	2 4.		f(x0) = 0/151(x0 X0) >0
	m <f,f> = <f,tyf> = <fo77, yf=""> 7</fo77,></f,tyf></f,f>		f(X2) =0.
	MAP (<fot7, yf="">) = 1< F, f>1 ≤ 11 F11. 11 f11)</fot7,>		从海 0=<20.Tf > = <2, f>= <f, x=""> = dist(x)>>></f,>
	= 11711/14511		矛盾:从而 X∈X. ∀fo∈Xo*, AHohn-Banach定理知
	故师可引《川川》下可为上的上的线性泛逐	0	∃ f∈ x* 知智 fo=if,故
	故日以《上》使得	•	<20, fo> = <20, Tf> = <2, f7
	< FoT, v> = Se vu tvell	•	= <f, x=""> = <f0, x=""> \fo \in X,</f0,></f,>
	特別 的	•	至此今越得证.
	< F, F> = < To 7, y => = Sa y fu	•	
	= < f, u>.	•	
	文理、设X为自反角赋范结性空间,则X的在一闭。	•	
	空间也自反.		
	证明: 设加为X 闭子完间,只要证明 划 Zo∈X5*, ∃ X≤X6		
	使得 〈Zo,fo〉= 〈fo, X〉 ∀ fo ∈X*.		
	考虑X在Xi上的限制填b Tf=f X。∀f∈X*		
Summary	O Longe	Summary	
Quinnay		0	
		0	

CUE	2	CUE 新列展与弱*序列紧.
	2	定义:设义赋范兹性充间, {xn}⊂X, xn ∈x,老
	5	$\lim \langle f, x_n \rangle = \langle f, x_n \rangle \forall f \in X^{\frac{1}{4}}$
	0	森侧弱性硷于Xo, 花为ω-lin Xn= Xn或 Xn → Xn
	2	● 有趣:弱极限难一:
	2	Prof. flw = fig) \fex* \fix-y) =0 \fex*
	0	€) x-y=0
	2	● 一种
	9)	1 <f, th="" xn-xx ="" ="" <=""></f,>
	9	● 立即得到.
	0	例: X= L²(0,1), Xn= sin (htx), 刷 ∀ y∈ L²(0n).
	0	由Riemann-Lebesgue 定理
	0	So yee, sin(moved t ->0 as n-100
	5	134 1 X= 28 (1< P< 00), xn = 6n, An).
	0	Z ynen = en yn →o.
	5	定理: 盖 X 为有限组励芝跃性气间, 则
	0	強收敛台 弱收敛.
	0	Prof、只需证明充分性、设 dim X c oo , M 设(ei) 简为 X 的一
	0	组基,故目(Fixiacx*使槽 fx(ex)=50)
	0	故甚 $X^{(n)} = \sum X_j^{(n)} e_j \rightarrow X = \sum X_j^{(n)} e_j$
	0	Summary
Summary	0	o summary
	0	

定理: 设义为可分赋苑维性空间,则冲中任东有界点列 MY KiEn CUE $\int_{\Gamma} (x_0^{n}) = X_1^{n} \longrightarrow X_1$ 物有弱*收敛子列. Profite (XK) FEEL 有X的视频集, \$ 501 00 CXX, 满足 MM NE , X3 4 6 115n11 ≤ M \ \ 1 ≥1 故 || Xin) - Xi|| < max||e||| |Xi (n) - Xi| NI Y K SI TA | fn(xk)| ≤ ||fn|| ||xk|| ≤ M. ||xk|| < E · max |leill 从而对于任意结定的 k≥1, (fi(k)) 在 C中有界,从师 定义:设ECX, 淋E弱躺序列闭差{xn} CE, Xn-1 Xo 有收敛3列、设 {fin(xi)} 收敛,巷已选俎{fin}, 有 xo ∈E. 定理: 風遊线性空间以中的闭凸集都是弱序列 闭的. 朋存在(f0e)) 的 多到 满足 (f(k*1)(xk+1)) 收敛. Boof Y {xn} CE, E闭凸翼, xn → X, 断言:XEE 则选出对角元(fx) 满足 老不然, {X}∩E=p, 由ASoli 灾理, afeX* (5°0×4)/收敛 使得 f(x) >Psf(y) Y YEE 故∀x∈X, ∀Exo,∃N∈ Loo便得 M市 f(x) > r > lim f(xn) 11 X - XN11 < 53M. 推花:设 Xn→Xo, Pil Xo € Conv(Xo) 刚由 (5th) (XN)) 收敛如其 Guohy 从而 3 M20. 定义:设X*为X对偶空间, {fn} CX*, 于EX*,若. 4m | fk"(x) - f(")00 | (| fk"(x) - fk"(xn)) lim fn (x) = f(x) \ \ x \in x + 1 fla (x) - fl (x) + 1 fl (x) - fl) 则称(56)弱*收敛于广, 记为 56. 当广. Remark: <Jx, fn> = <fn, x>. 故 (fix (x)) (auchy 4×EX, 记. 弱收敛 ⇒ 弱半收敛 f(x) = lim f(x) + x ex ¥"若 X 自反 3 T) Summary Summary 9

CUE 刷易证 $f \in X^k$. 故 $f^{(n)}$ 生 f 定理: 因反定问中的单位对通畅列集. Described $f^{(n)}$ 人 $f^{(n)}$ 上 $f^{(n)}$ 是 $f^{(n)}$ 人 $f^{(n)}$ 是 $f^{(n)}$ 人 $f^{(n)}$ 是 $f^{(n)}$ 人 $f^{(n)}$ 是 $f^{(n)}$	(Banuch 連算子度理,一致有界定理, (DE)
	•/

从而 B(o, E) C AB(o, No), を5= 5/n。
 側 B(o,5) C AB(o,1)
 定义: 若{xn} CX 且 Z||xn|| <+no, 則称 Zxn 绝对 收敛、引理: X 为 Banach 空间 台 绝对收敛的复数均收敛、

Prof. ⇒"该 Exn 绝对收敛, 记 Yn= En n, 丽 (n) (auchy, 从而收敛.

11 Xnk+1 - Xnk 11 & 2k

从而 Z (Xnich-Xni) 绝对收敛,从而收畅, 引 {Xni, 收敛, 故 {Xn}收敛

引理:设义为Banack空间, AE L(X,Y)且R(A)第二组,则习 6.>0 5it. By (0, 6) < AB(0))

Prof.由AEZ(X)), RW第二纲和, 36xx便

得 Br(0,28) C AB(0,1)

(\$\, 0.01 & 9 € B (0, 6) < A ≥ 1 € B (0, 6) & 9 ¥ ¥

114-4211< /2 11211< \$

対す y-AZI ∈B(0, 04) < ABIO, (以, 01BA - y もは)

11 y - Azi-Azi | K. , 11211<2

THE THE SENT OF THE PERSON OF

Summary

CL

0

3

||Y-A左FZi)||< シ ||Zk||< 公 故得到一到 {Zk} C 才,超由 芝||Zh|| < 三张 =1

知区处理对的数并且 生三石之, 柳山川区下川川

从而 y=A(Z2x) 故

B10,8) ⊂ AB/0,1).

过理(Banach 遊算子定理)设入下为 Banach 空间, A∈是(入下) 双射, MA有界可逆、

Roof 由 A ∈ 足(XY), R(A) = Y 为 Banach 空间, 由Baire 定理 R(A) 为第二纲,从而 目 5>0 使得

B(0,8) < AB(0,1)

故 4 3 E Bto, Y, 114111 · 2 E B10, S) CA B1011)

从而 11A7(请·至)11<1

P 11 A-1 y 11 € € 11 y 11

即A"有界,从而A有界可遊、

定理行职新定理),设义为Banach空间, AEL(XY), R(A) 第二纲,则A为开映射、

Roof、VOCX开建,则革节月EO使得

B(x, €) < 0 €

又X Barach完间, A EL (X, Y), R(A)第二(A)元, 35×20

B(0, 8) < A B(0, 1).

⇒. B(Axo, S) < AB(Xo, 1)

 \Rightarrow B(A Xo, Ed) \subset A B(Xo, E) \subset A(0)

故 A(O) 为·1.建

定理傳价范表定理),设川川,川川,为结性完间上的2个 范表,老(X,川川),(X,川川)为Banach空间,赶且

小小孩子小儿, 小小小与小儿等价.

Bor 定义结性映射:

T: (X, 11-11) -> (X, 11-112)

 $\times \longrightarrow \times$

从而由小川强于小儿处 30万

ITXII2 & C IIXII

由Bonuch遊算子定理知下"有界,故习C'便得

117 x 11 6 C' 11 x 1/2

即川月当川省价、

定理问图像定理设入广为Banach空间,A以一个为线、

性質子老A的图像

G(A) = {[X,A]: XEX]

Summary

CUE

为X×下中的闪集,例称A为风算子,在X上外外有 定义的闪带子从有界。

Remark,要说明A:UA)一个为山南子,同

Xn > X, Axn > y = 1 X E D(A), y=Ax.

Prof 在班式完间X×了上 则不参与以下范数

11(x,y)11 = ||x|x+114|14

则若 {(xn, yn)} Kauchy in Xx下, 別由

11x1x < 11(x, y) 11, , 11 y 11 x < 11(x, y, 1),

知 (sn), (sh) 分别在 X, Y上 Coverny,从而收敛

j x, y, 即

11xn-x11=>0

故 ||(xn,yn)-(xy)||=||x-xn||x+||yn-y|| y >0

即(X×Y, 11·11) 为Bomaon 它间, 寒凉 G(A)为

XxY中的间集,从而也为Banach空间。定义算了

T: G(A) -> X

(x, A) → x

则由(A)=x知了为满射,率射,故且

11/16/2011 = 1/18 11/4 | 1/18

从而 T ∈ L (GLA), X) 故由Banach 逆解定理知

T1∈ L(X,G(A)),即3C>0使得

BAR GUE XIIX € C(XIIX+ AXIX)			
TIMIX - C(TIMIX + TIMIX)		2)	CUE \$ Tixk € N \ k31, €I
BY A E L(X).	9)	全km 由Tied(XY)知
Remark 老 X, 广为Bancon 气间, A E L(X) 双射	0)	IITI XII SN Y I EI
$G(A^{-1}) = \{(y_1A^{-1}y) : y \in T\}$)	MAD SUPIEL ILTIXII SN => X E Xn
$\mathbb{Q}_{1} (y_{n}, A^{-}y_{n}) \rightarrow (y_{1}x)$	-	2	故Xh闭,而由X为Banach党间知X为第二纲集,
$\Leftrightarrow y_n \to y, A^{-1}y_n \to X$		2	从而习no∈忍o1使得
⇒ Yn = AXn → Ax. (A E 模 位).		2	Int Xn ≠ø
4n → 4	0	2	从而 B B(Xo, 8) C Xn. 引有
$\Rightarrow \forall A = A \times \Rightarrow X = A^{-1}A$	0)	3	Ti(Xo+88) & N Y ZEBIO,1), IEZ
$\Rightarrow (y,x) \in G(A^{-1})$))	MAD STICE) & R+TI(NO) YZEBION) 162
从る AT 为闭填子, 故 AT E & (れ).	0	7	对之旅上确界有
定理(失鸣定理)设义为Barach空间,广为愿(范线/性号)。	0)	(a) it the selection of
	0	>	由一步有 sop Ti < 11. 15mpTi(xx)
Tisies (足(X下)」者YXEX有	0)	推花波 X 赋艺统准定间,(xn) C X, xn - x, 则 {xn} 有界.
	0)	Boot.由 C完备和X* 为 Banach 空间,故定义算了:
Pi) sup 11.7; 11 < 00.	0)	
Prof V n ∈ Z>, 73	0)	$T_{\mathbf{A}}, \chi^{\mathbf{x}} \to \mathbb{C}$
Xn= {xeX: Sep TixII ≤n }.	0)	#f > f(xn)
则由 sup Tix <00 (4x) 大D	0)	由 Xn → X 知 (Thf)收敛,从而有层,即
$\chi = O_1^{\infty} \chi_h$	3)	sup ITA fl <00
$X \neq \{X_k\} \subset X_n, X_k \rightarrow X$	7)	由入*为Banach 东间以及共鸣定理名 51/7 17n < Do
Summary	3)	Summary
	0)	
	7)	
	7)	
	0)	

77 |17n||= 5mp f(xn) = 11xn1) IlAnx - AXIKIIANX-ANYII + IIANY-AYII + II AY-AXI 0 放 sup || Xn| < m 即 (xn)看界。 推花:设X为Banoch空间, Efn SCX*, fn 半fi则 推花,X丫为线性赋艺空间,tangCX,x GX,设 M*为X* (5n) 有界. THE SIL, IN Afex, Skn, -> fix (=) Bof 定义算子 Tfn: X→ C O. Sup ||xn|| < 00 X P) SIXI O. fixn> fix + f∈M* 由点上方面 サメモX Prof. TR An=fn, 即得. my Tnx < 00 而X为Banach 沉间,从而由共鸣定理和 not 11 This coo (ITAI) = sup |Tax| = sup fals = 11tali. 定理: 设X为Bancoh 定间, {An} C之(X,Y), M为X 範期數子集,则甘xcx, Anx→Ax当且反当 O SUP ILAXII < SO Q. YXEM, Anx >Ax Proc."=>"是显然的 下记"는" ∀xex, ∀Exx, ∃yeM 1更得 11x-y11< 8/2 B 其中B= Smy |IAn||, 由 Any > Ay知 ヨN >1) Y NON有 liAny-Ayll < 影. 故 7 Summary Summary

Banach 共享原第子. 定义:投入下为赋充线性空间,A∈是(X),失义A':Y≥→X to <A'y*,x> = <y*, Ax> ∀x∈X,y*∈Y* 松A'为伴随A的Bonner大部集子、 命题: A'为线性的, 有界的 Prof. ∀ d, B ∈ C, y*, Z* ∈ Y*, x ∈ X ? · < A' (wy * + B Z*), x> = < xy*+BZ*, Ax) = << y*, Ax>+ B < Z*, X> = << A'y*, X>+B < A'y*, X>+B <A'y*, X>+B BP A'(Ly+182+) = WA'y+ + BA'Z*. Yy*E Y*, XEX < A' y* , x> = < y*, Ax> < ||y*|| ||A|| · || || || ⇒ 11 A' y*11 € 11 A11 - 11 y*11 > 11 A'11 € 11 A11. 命题: 定义T: 是(x, Y) → 是(x, X+) MOT(XATBB) = XT(A) + PTB) 0.7(1dx) = Idx* @ TUAB) = TUA) T(B) 母老A有界可逆,则T(A)需可逆且T(A+)= T(A) B 11A) 11 = 11 A)1. (1) Proof Ozte. 1 1 0 1

CUE ② ヤ リモド、モモ X、同 (のUE M $\forall v \in L^1(\Omega, \mu)$ 有 I $\int k(x,y) u(y)v(y) d\mu w d\mu y$) $\leq \ k(x,y)\ _{L^1} \left(\int_{\Omega} u(y) ^2 d\mu w d\mu y\right) \int_{\Omega} v(x) ^2 d\mu u $ $= \ k(x,y)\ _{L^1} \ u\ _{L^1} \ v\ _{L^1}$ 从品 $\ k(x,y)\ _{L^1} \ v\ _{L^1} \ v\ _{L^1}$ $\forall v \in L^1(\lambda^2)^*$, $\exists v \in L^1 $ 使得 $\langle f, u \rangle = \int_{\Omega} u(y)$ 从品 $\langle A^1 f, u \rangle = \langle f, Au \rangle$ $= \int_{\Omega} x k(xy) u(y) y_{f(x)} d\mu u u(y)$ $= \int_{\Omega} x k(xy) u(y) y_{f(x)} d\mu u u(y)$ $\Rightarrow x^1 f(x) = \int_{\Omega} k(xy) y_{f(x)} d\mu u u(y)$ $\Rightarrow x^1 f(x) = \int_{\Omega} k(xy) y_{f(x)} d\mu u u(y)$ D $\lambda^1 f(x) = \int_{\Omega} k(xy) y_{f(x)} d\mu u $ D $\lambda^1 $
可测, 「豆豆 k(x,y) dun duly) < + 10. 定义 (Au)(x) = 「豆 k(x,y) u(y) duly)	
Summary	Summary Summary

# X 月 反 M R (M) = N(A) ¹ Prof. ① & E N(A') 会 A' y = 0 会 < A'y, x> = 0 女 x e x 会 y ∈ R (A) ¹ ④ X ∈ N(A) 会 Ax = 0 会 < A'y, x> = 0 女 y ∈ Y ^x 会 < A'y, x> = 0 女 y ∈ Y ^x 会 (A'y, x> = 0 女 y ∈ Y ^x 会 (A'y, x> = 0 女 y ∈ Y ^x 会 x ∈ R (A') ②由 (R (A') ¹) ¹ = R (A) 立府得利 ③由 (R (A') ¹) ¹ > R (A) 过府得利 意 由 (R (A') ¹) ¹ > R (A) 过府得利 表 x 向 反 , 则 X = X **, 从 而 由 ⑥ 引理: 设 医	CUE
Summary	Summary O O

有界线性界算子的谱. CUE 龙义设义为Banach空间, AEL(X), 入EC为A的特值 值, 若 (XI-A) x=0 有非零解, 林 x 为关于入的特征内量, A 的特征值 的集合和为A的点谱,记为「P(A)、此的AI-A非单、 若入EC,入IA为车射、则 ①. AI-A 满,则由Borach 逆算子定理, AI-A有界 可遵,称入为A的正则点, CAI-A) 林为A的 预新式, 记为 RICA)、A的正则未脱集合核为) A的正则集或预解集, 记为P(A) @ R()=A) = X (2 R()=A) = X 称入为A的连续谱, 尼为TC(A) 3 R(AI-A) +X 称入为A的解除情,记为 Tr(A) 71 C= P(A) U TP (A) U TO (A) U TP (A)) 1 记 T(A)= C\P(A),称为A贴潜弹, T(A)中点散为) AGA 推点。 的:设A= -(品) × X=C([0.1]) D(A) = { u ∈ C2([0,1]) : u10 = u10 = 0 } を「しいけ」=入れけ (u10) = u(1) =0 Summary

The (NTHE Xn = sin (NTH) CUE 例: X=C([an]), 定义A: X→X 为 Ault) = tull) 老-(A-XI) いけ)= (入-も)いけ)=0. 別 甘 t+入, UH)=0, 但 u∈C([[0,1]) 故 u=0. ∀+€[01] MAP YXEC, XI-A+AT=> TP(A)= \$ サス¢[OII], ∀UEX 有 $(\lambda I - A) \left(\frac{U}{\lambda - 1} \right) = U$ 且 共 € C((501)) 从市 € \ [0,1) < P(A). => o(A) c [0,1]. X > D = (x)u(A-I)) / M [1.0] > X 从而 R(XI-A) # C([Dil]) R R(NI-A) + C(TOI) 从南 Vェモ(ロ) [ロ) (タ(A) =) (ロ)= (A) P(A) = C / TOID Tr (A) = TOIL) 定理, 设 X为Banach 空间, A∈ L(X), ||All<1, M I-A有界可遊且(I-A) = ZoA, 17(I-A) 11 6 1-11A1 Summary

Roof. 考虑 Su = 是 Ai, 別 1 1 | A| 1 | 1 - 1| A| < 00 从而 Sn绝对牧额, 故 O器 Ai Ed W 和直接验 设有 (こみ) (I-A)= (I-A) (こ Ai)=I 定理:改入为 Banach 定间, A € L(X), 刚 ①P(A)为C中旗, ♂(A)为闭集 ②有界可遊鉄性算子为是(X)中开集 ◎差A有界可遊,则 A →A-1为连续函割、 Proof O. Y LO E P(A), Pil Lo I-A 有界可遊, LEP(A) 当且反当な社 (XI-Ak=f 有解,当且反当 u= (101-A) (f+ (10-1) u) 故当 以-dol || (hoI-A) -1/1 <1 时由压缩映彩之得 @ 1 | A-BII < 11 A-11 , PM 11 I- A-18/1 4 11A-111 11A-B11 41 从而 ATB可造, 进而 B= A (A-13)可选. 图. ∀ A 有界可逆, 由② II A-BII < 文献 → B可述 EKER 11 I- A'BII & |1 A'11 11 - BII < }

118711 € 11 B7A1111A411 = 11(A7B)711 11A411 < 1/A-11 < 2/1A-11

Mm 11A-B11 € 11A-11118-11 11 A-B11

< 21147112 11 A-BI).

定理: 设X为Banach空间, A ∈ LON, 例 lim || Anlin = inf || Maniin

存在,记为个(A).

Poof. 若 11A11-0, 則结论显然. 下设 11A1170.

it ing HANIT > ing HANIT To limit | IAN | 1 > inf | AN 3.

元ト(A) = inf NANA, AI VEX, IN EZoo 使得 rca) & IIANIIT & rca) + E.

则 4 N N N , 3 P , r ∈ Z > 0 使得

NH= PN+ , 0 < 1 < N

从而 11AM = 11AMP. 11AM < (r CA) + E) NP . HAH

1 (3+(A)1) =

故 limsup ||AN|| t « r (A)+ E.

由《任意性立得、

推走:设义为Banach 空间, AE 是(X),则 且(A)934 押(A)7<1610

9.7 ¥ 20€p(A), 12-20 < ct。 A 入∈p(A)且 (1-A) = Z = (-1) (101 A) (+1) (+10)

B. J(A) C {L€C: |A| ≤ r(A)}

Prof D由 以 > r(A) = lim ||AN|| 大友, I no E 起。使得

V Harroto 121 > 114112 > 11(4)111<

杨敬敬

||An|| + < r(A) + € > ||An|| < (r(A) + €)

英中 E=1入1-1(A),从而 11 (A) 1 & (r(A) + &)

故级数去又8(今) 绝对收敛,从而收敛,直接验 记有太∑%(含)n=(AI-A)~.

②注意到∀入€限.

A-Lok+L(ok-k) = (A-Lok) $= (\lambda_0 \mathbb{I} - A) \left(\mathbb{I} - (\lambda_0 - A) (\lambda_0 \mathbb{I} - A)^{-1} \right)$

= (\(\lambda \cdot 1 - (\lambda \cdot \lambda \) \(\lambda \cdot \lambda \) \(\lambda \cdot \lambda \)

数当 1 >11111((かみ) RAO(A))11が = 120-21 「(RAO(A))

Summary

3

1)

2)

3

3

3

3

3

明(I-(Ao-A) Ra(A) 可述,且适为 In (No-N) Ru(A) With (XIA) = (I-(b-1) Rho(A)) (hoI-A) = Z 0 (lo-1) n Ro(A) n+1 ③由① 左 C (ERIA), RIA) C P(A) LA C EXMISCO: IXI (R(A)) 南: X=([0,1]), 定义(AX)(+)= St X(s) ds, 则 (Ax) H) ≤ IIXI t (A2x)(+) ≤ MI = (Anx) (t) lixII to lixII n! ⇒ IIANXIIt < III >0 故r(A) = IIm IIAnIIt =O i从市 T(A) C {0} 予 | ◆ R(A),从南 D∈ Tr(A). 定义:设义为Banach空间,AEL(X),林知以 Xellas Xellas 为A 的谱半径、 Remarki 由上一个担论知: SUP IXI & r(A). 引理: 设X为Banach空间,A∈L(X),f∈(L(X))* 刚f(RA(A))为PCA)上的解析函数。 Summary

V do €P (A), 由P (A)为开建和, 目670 Blh, 5) CPCA). 由而サムモB(to, 5)有 RX(N-RXA) = (12-A)-1 (12-A)-1 (A-IA) ((A-IA)-(A-IOA)) (A-IOA) = - (\(\lambda \text{I-A} \) (\(\lambda \text{I-A} \) \] MAT HIM RAW-RAW Q= - (AoI-A)2 故 ∀ f∈(是(x))*,有 lim <u>f(RA(A)) - f(RA(A))</u> = - f((A-1-A)-2) 即 f(RX(A))解析. ヤスモP(A). ②由展升证明 ¥20 €P(A), 由于 12-23 < 六, 可推出, $R_{1}(A) = Z_{0}^{\infty} (\lambda_{0} - \lambda)^{n} (\lambda_{0}I - A)^{-(nn)}$ MAT Y XEB(NO, YE(RINA)) A f(RX(A)) = Zo f(R(A)MH) (NO-N) Vf e(L(X)) 定理:设X为Banch空间,A∈足(X),则 SupIrl =r(A) Prof. SMP IN STAD ZIZ. TIZE regia, IN 3 r(A). 注意引 ∀1入1 > SMP IN , 入∈P(A),故(A]-A)有益 Mm \fe(足(X))*有

f(R(N) = Zo f(An)

Proof 们由复可导证明.

由于解析和 $f(\frac{A^n}{A^{n_n}}) \rightarrow 0 \quad \forall f \in (\mathcal{L}(X))^n$ 由共鸣定理: VA, 3MAx 使得 MAMILY MAXMA 故 r(A) ≤ λ 全入→ R SUPIN 得 r(A) < SUPIN 最定理:很×为Banach空间,A∈是(X),A'为A的Banach 共 轭弹子, 则 1) D T(N + P 1) @ +(A) = + (A), P(A) = P(A') A RI(A') = RI(A)' Prof O 反後 T(A)=力, MP(A)= C, 被 Vfe(足(X))) f(R)(A))为C上生纯函数。但 IS(RMAN) | S HI-MAN -> 0 as WI -> 0 从而 f(RA(AI)在C上有界,故由刘维尔定理 知 f(RA(A)) =0, ∀f∈(L(X))*,故 RALA) =0 YX EC 这有 AEP(A)矛盾! $((\lambda \mathbf{I} - \mathbf{A})^{-1})' = ((\lambda \mathbf{I} - \mathbf{A})')^{-1}$

Summary

.

1)

紧算子基本性质.

定义:设义广为赋范线性定间,A:X→广为线性算 3 . 若 A 档 X 中有界集 映为列军基。则淹 A 为署算 3 . 元 X 到 F 所有果算 3 的果 6 为 C(X, Y) 全连续映射: 累映射+连续。

今題: 異算子为有界线性算子, 即 C(X,Y) C X(X,Y) Pool. 取 Bx ={x∈X: ||x||<13, 列サA∈C(X,Y), A成列 果, 从而完全有界进而有界, 故

 $\|A\| = \sup_{\|X\| \in \mathbb{R}} \|A_X\| = \sup_{X \in B_X} \|A_X\| < +\infty$ With $A \in \mathcal{L}(XY)$.

例: 设立 C R 为有界闭集, $k: \Omega \times \Omega \to R$ 为二元连续函数 定文 $(Au)(x) = \int_{\Omega} k(x,y) u(y) dy$ P $A: C(\Omega) \to C(\Omega)$ 为发算子。

Bof 对于任意 C(S2) 的有等了集子, 3M >0使得

llull ≤ M & u∈ Fe.

R1 11Aul & M(2) 11K1xy11, Hall

< 14(20) || K(X) || M

从而 A男 一致舒烈、由KIXg)连续, SLAS、闭知 K(Ay)一致连续, 故 V Exo, 36x

1x1-x21<5 => 1K(x1,y)-K1x1,y) < \(\xi_1\nu_1\nu_2\)

Summary

CUE MR ∀U∈FI.	CUE	Romark: A:X→Y 线性質5,湛X有限维,刚A 为有障
$ X_1 - X_2 < \delta = $ $ Au(x_1) - Au(x_2) $)	THE PART T
≤ So luggi 1 klaggi-klaggi dy	0	其A∈又(みど) 为有限教育を、別A∈C(えど)
(1001) 1001 3 2 1001 1000	0	上日 JR 、 V 为赋办红州完间,则 C(x,Y) 为处(x,1) HOOT
BY ASTE 等度连续,从亦由 Asiali - Arzela 和	2	定词,若Y为Banach定间,则C(x,Y)为是(x,Y)的闭
A乎列第,进示 A ∈ C(X).	3	709
例:设X=Y=e°、定yA:[Xi] → {xyi}, MA	3	A.REC(X,Y), 刚Y(Xn)有价.
为果算子.	2	(A) FEXAL 有收值(89) [A NP] , ** J
Bofigs CX 为有界集,即3M20使得	30	1 + up to 731 BXMILL, MIP (MATPE) M)
$\ x\ _{2} \leq M \forall x \in \mathcal{F}.$)	ELLEGIZAL { (KATBB) XMjk}, MM XATPDE CAT
由 乙壳 收敛矩: ∀ 8次 3 N ≥ 1 使得	2 0	建一步设了为Banach 空间、全An∈C(X), An→A,例
(Int h) 1/2 8/M.	2	¥€元, ∃N∈Zo 使得
以 ∀ X ∈ 牙 有	21	11 A - AN 11 < \$2
$\left(\sum_{N+1}^{\infty} \left(\frac{X_{1}}{1}\right)^{1}\right)^{\frac{1}{2}} \leq M \cdot \left(\sum_{N+1}^{\infty} \frac{1}{1^{2}}\right)^{\frac{1}{2}}$	2,	スターの Mxc X、IIXII<13, 別由AN为異算子をAMBA)
(ZN+1 (7) / 8 M (ZN+1 12)	2,	刊度最,从而完全有界,故目有容多一网,设为{xi},"周
	2,	AN(BX) C U, B(ANX, 5)
从而 AF列策.	2,	P1 ∀XEBX, ∃Xi (I≤I≤n) 使得
例:设义为无穷维赋范线性空间,则Idx ◆C(X)。	2 9	MANX-ANXIII < 53
Box 只要注意到单位球面不列策。	0 ,	故 Ax - Axi < E
定义·波义广为赋范线性空间,A:X→广为线性算子,	2 3	即[xi]为ABx的E-网,由Y完备和 ABx列展。
若olim Ra) <∞,则於A为有股軟質于·	2 3	et (x1) and and the
Summary	0 3	Summary
	0 7	
	0 9	
	0	
	0	

例:後X=l' A: (x) 1 (か). MI AEC(X) Bofex算子 An:(Xi) → (X, 至, ..., 子, ... **, ... **, ... **) 则An为有穷极算了,从而(An) C C(X),则 ∀x∈Bx A $||A_{\lambda} - A_{N,\lambda}|| = \left(\sum_{NH}^{\infty} \left(\frac{\chi_{N}}{N}\right)^{2}\right)^{\frac{1}{2}} \leq \frac{1}{N} \left(\sum_{NH}^{\infty} \left(\frac{\chi_{N}}{N}\right)^{2}\right)^{\frac{1}{2}} \geqslant$ 5 + 11x11 = 7 故 ||A-AN|| ≤ 内 →0 05 N→00 2) 故由 ℓ 完备及 C(X) 阅知 $A \in C(X)$. 史义设义了为断范线性空间,AE是(XY),森A为全 连旋算子卷A将X中弱收敛的点列映为下中依芜 数收敛的点,即: ∀ Exng CX, xn→x 有 AXn→AX. 定理:设入下为赋芜线性空间, O若AEL(XY)且Xn→XMAXn→AX 2) ◎若 A∈C(XY),则A全连续 ③若X白反,A全连续,则A∈C(X). .7) Boof ①由 Xn-X 和 + ge X* g(xn) -> gx) 故》fe丫*,林全了=foA,明由 19x1 = |f(Ax) (= 11911-11X1

知geX*,从而 ∀feY* f(Axn) -> f(Ax) BP Axn→ Ax. ◎友设 Axn不做做于 Ax, 则 ∃ 6.>> 及 {xn}] [xnk] 使得 || AXNK - AX|| > Es サト>| 从而由AEC(X,Y)和及 片(xne)有界和 [Axne)有收 飲了了, 强 ||AXIKj-y||→0 || AX+4 则由×n→x 50 Axn→ Ax 程 Axning→ 每Ax 但由以知 AXN; → y 由极限唯一性知 y=AX矛盾! ③由义自反和 BX 勃引霜,故∀{xn} < Bx , ∃ {xnk}, x 使得 Xnk ~ X 但A生莲爱,故 AXM → Ax MB A ∈ C(X, T) 定理港A∈C(X, Y), M R(A)可分 BOOF . # J X = U, B(0,n), → # R(A) = U, A(Bn,n) 由 AEC(XY)知 A(Bhon)列第四 A(Bhon) 完全有界 从而可分。 定理:设A∈L(XY),B∈L(Y,Z),苦A,B中有一个紧拿子 MI BAE C(XX)

Summan

Box 若B星舞子,则 甘 BCX有界,则 YxcB CUE 11Ax11 & 11A11-11X11 <00 故AB有界東西BEC(YZ)从市BA(育)列署、 老A最傳子, A) Y[xn]商界, ∃ (Xnk) 及X∈X AXNR -> AX 由B有界和 BA Mr. → BAx 定理:设义广为Banach空间,且义广至少有一个为无穷组, 老A∈C(X,Y)为单期,则R(N+Y Broof 由 Tto Bomach, 反龙 R(A)= Y, 刚 A为及射且 Y=RIA)为第二纲, A∈ L(X) 成由BAngch 选算 子定理知 A有界可遂, 即 AT € L(1, X), 从而由 AEC(YX)知 AAT, ATA 均为器等了,这说明 Idx, Idr物为紧撑, 由于人, 上其中有一个为无管 维尼 问,这是不可靠的. 度理设义、Y为Banach 定词, AEC(XY)、港 RIA)无穷 组, M RIA) + RIA Prof 反说 RIA)=RIA), RIA) HO Banach 培油下的闭 为满面, RIA)为Banach 空间,从后由上一个定理知这 足不可能的

Summary

灾建:设义,Y为赋艺线性定因,A∈C(X),A'为A的 Banach 共轭值子, 刚 A' EC(X*, X*) 臣之若下为Banach 室间 刷 A'e C(ア*, X*)=) A ∈ C(x, Y) Prof = Tiz, O Asadi - Arelza 由ATEC(XY)和 K= ABA 为果果,其中 BAX中的 单位驻,考虑 C(k) 的 引 F = {4n ∈ C(K): 4: X → < VTA, X>} 其中 {Unl C BY*, 只需证明(151)有收敛子列町牙,由 K为紧集和其有界 化界为M, 刚 | (Pn(x) | ≤ || (Vn||· || X|| ≤ M 从而 119nlloo KM 即 开有界,并且从 XyEK,有 1 4n(x) - 4n(y) / 1/x-yn 即牙等度连续放出Ascoli-Areka 短牙列岩,故(Pn) 有收敛子到,设建收敛于中,加 119mx - 91100 = SUP 19W-4(X) 1->0 WEBX | PAR(TX) - PA(TX) = SUP | (TA), TX> - P(TX) = SWP | < T*VAK, x> - 4(1) | >0 Sup (T* VILLX > - (T*VILLX)

= 117+ VAR - T+VALI >0

这说明 [T*Vink] 在 X* 中 Guelry , 而 X*加Banach 空间,从雨 {T*Ving 收敛. 证之回,直接验证完全有看). 设品的为广的单位球,要记了帮助到果,由外宝 备处只要证 丁水的*完全有界这 117*y* - T*y;*11 < E. €) ¥ 8xx, 4x68 ¥ y* € Y = i 1<T*y*-T*, 4;*, X>1 < E 1< y*-y;*,7x> 1 < E. 由于TEC(XY) 故 TBx列果,从而完全有界. 甘E>0 ヨ{xj}n 使得 ∀xx ∈Bx, ヨj 11 ATX - TX:11 < E/3 则 Z= span (公),有限组=) Z*CY*有限维 故Z*单位非列第 习 {y*] 使得 \ 4 GB r + 3 i 114/20 - 41/21/ Exm 断言 {9;]为BY* 阳有穷 E-网, 事实上 ∀x∈Bx,∃ k便得 IITx TxxII = E/2 4 3*E / * , 3 | 11 y + z - y | | | | E / 4 7 3 + 4 4

CUE | <y*-y, Txx> = | < y*|z-y* | z, Txx> < /1/21 · | 1711 · | 12611 0 = /3 1<4*-4; *, Tx> | < | < y*, Tx> - < y*, Txx> | + | < y*, Txx> + 1 < 4 } , TXK>- (4; *, 20) 至此命题得证, "会"後丫为Banach 定间及 A' ∈ C(丫*,X*) 別 A" E C(X科, Y科),程了,了知为X→X科, Y→Y科 的典型映射, 加 甘x ∈ X, 岁* ∈ Y* 有 <A"Jw, y*> = < Ju), A'y*>

(AXIK)收金.

= < y* , Ax> = (J(Ax), y*) A" of = JoA 设 (xn) 为 X中有界点到,则 (J(xn))也有界,从而 由 A" ∈ C(X**, ***) 和 (A"oJ(Xn) no, 有收斂 3 m) 记为 [A"o](Xnx) (在A"o]=joA,故(joAxn) 收合,从市(JoAXnel Quong,而了为等疑映射 故 {AXnk} Caudry in 下,而 Hb Banach 空间,从市

= < A'y* , x>

Summary

CUE			CI	UE Riesa — Schaudm理性.
			•	本章书中,设X为Barach 空间.
			9	定理:设 dim X=∞ , A ∈ Q(X), M O ∈ σ(A).
			9	定理: 设入+0,A∈C(1),M⇔Kar(11-A)有限组.
	THE RESERVE OF THE PARTY OF THE		9	Poof: 若dimx <to,则显然成立,下设dimx=00< th=""></to,则显然成立,下设dimx=00<>
	O LINE WAR TO THE REAL OF THE PARTY OF THE P		9	TON = KAN(XI-A), M V X ∈ BN(O, IA), M d
	0		,	X EN to XX=AX By XEBXA (Boto, 11)
	MED STATE STATE OF THE STATE OF		•	$X = \frac{1}{2} A_X \in \frac{1}{2} A(B_X)$, $Q \in C(\lambda)$, $Q \in C(\lambda)$
	O CONTRACTOR OF THE O		9	A(B) 为发集,从而 BN(O,1) 发 联 N 有限组.
	O THE RESIDENCE OF THE PARTY OF		7	定理:後入‡0, A∈C(X),则 R(AI-A) 闭.
	The state of the s		9	And:由上午東理和 NCJ-A)有限维 含 N = NCJ-A)別
	George English and Andrew O		7	N为X的闭子空间,考虑商空间及映身
	0)		7	$T: X/N \longrightarrow R(\lambda IA)$
	ANTA MALAMANIA		7	$[x] \mapsto (\lambda 1 - A)x$
	D Committee of the comm		19-1	则闭 = R(XI-A),且下为双射,并且从以∈XN
	9	ı	-	∃ Xo ∈ 区) 使得
		ı	9 50	X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
		١	9	1 (λ1-A) Xa = (λ1-A) Xa
	0	١	5	[KJ 1 A-[K] > K 1 NA-[K]
)	١	7	即T∈L(X/N, R(NI-A)). 要证RC()=R(NI-A) 例, 9
Summary))	١	Sun	nmary
	n	١	7	
	n		>	
	n	1	7	
	0)	1	7	
	())			And the state of t

零记明3α>○ 使得)
TO) 74 O) .)
反设不存在这样的以,则 ∀ n ∈ Z, ,∃ [□] =)
但 II TOOII < 六 而由 II TOOIII 度关知, ∃ Yn ∈ [Sin]	3
便得 TTA7 = TY (A]-A) Yn < * (K)	3
119n11 < 211 [Xn]11 = 2	2
故由 Tyny 有界及A∈C(X)知,3{ynk}C(yn)使得	0
Aynk > L	2)
	3)
tAMAIR D)
	2)
BP Ynx→ 大l	0
NA Aynk → ₹ Al	3)
RM Al= Al ⇒leN	(1)
从而[[]=[0],但 [yn,] =1,補!	(1)
定理:设入和, A ∈C(X),则 R(XI-A)=X ↔ N(XI-A)={0}	· (J)
Rof:=>後 RINZ-A)=X, 反後 N(AZ-A) + [0], 成	D
$X_1 \in N(\lambda Z-A)\setminus \{0\}$, $\Psi X_1 \in X=R(\lambda Z-A)$, by	(1)
3 ℃ × 使得 X1 = (12-A) X2 1 例	0
$(\lambda Z - A)^2 \lambda_k = (\lambda Z - A) \chi_1 = 0$, $(\lambda Z - A) \lambda_k = \chi_1 \neq 0$	D
BP X € N(XZ-A) 12 X \$ N(XZ-A).	0
	0
	0

Summary

CUE TO ∀ X € N (XI-A) , TH (XI-A) X=0 = (XI-A) X=0 ⇒ X ∈ N (A1-A) = N (XI-A) = N (A1-A) 若∀K31 已经选出了[x,]***, 無使得 X; E N (XI-A) M / N (XI-A) 刷对文k,由 Xk→ E 社X=R(入IA)和, A Xk便得 $\chi_{k+1} = (\lambda \chi_{k+1} + (\lambda \chi_{k+1} + \lambda \chi_{k+1})^k \chi_{k+1} + (\lambda \chi_{k+1} + \lambda \chi_{k+1})^k \chi_{k+1} + (\lambda \chi_{k+1} + \lambda \chi_{k+1} + \lambda \chi_{k+1})^k \chi_{k+1} = (\lambda \chi_{k+1} + \lambda \chi_$ () L-A) K+ Xk= () Z-A) K XK+ =0, MAP XK = NUZA) KM NIX-4 故考记 En = N() Z-A", R) E1 \(\varphi \) 并且由 · (入I-A) k = 入ドノ + Z k (5) x k-j (-A) j 及 I'() x (-A) EC(X) 起 库Ex为闭塞, (Hn) 故由Riesz 定理和 ∀n≥1,∃Xn 使得 $x_n \in E_n$, dist $(x_n, E_{n-1}) > \frac{1}{2}$, $||x_{n+1}|| = 1$ 从而由AEC(x), (xh) C Bx 知 {Axn, 有收敛子列. @ ¥ n>n $||Ax_n - Ax_n|| = ||(\lambda x_n - Ax_n) - (\lambda x_n - Ax_n) + \lambda (x_n - x_n)||$ > INI dist (Xm, Em-1) > EIN 其中 (AZ-A) Xm EEm-1, (AZ-A) Xn EEm-1 CEm-1

IN CENCEMY. "~"设 N(AZA) = EO), R(AZ-A) + X

Summary

则存在 X1 ∈ X \ RI λZ-A),由 N(λZ-A)=63知 (NZ-A) X1 = X2 ≠0 to X2 ∈ RUZ-A), X4 R(NZA) 数学归纳法易得 E,孝臣孝… 孝氏孝… 其中日= R(AZA)"、又 (AZA)"= AITB,其中BeCw) 故 En=RIAZ-A)"为闭塞,由Ries文定理和: 3 ∀n≥1, ∃加使得 11×n11=1 dist(xn, Enn) ≥, xn∈ En. 由AEC(X)及 {xn}CBx知 (Axn)有收敛到 HAP EYMON A 11Axm-Axill = 1 (Axn-Ah) - (Axm-Axn) + A(xm-Xn) > 12) d/s+ (xn, En+1) > = 12) 其中 (AI-A) Xn ∈ Entl, (AZ-A)Xm ∈ Emtl ⊂ Entl 3 XXm EEM CENH 0 故矛盾! 7 推论:设入+O, AEC(X), M 入ET (A) 一入ETP (A) Prof. "一是显然的 "⇒"设入 ET (A),则入I-A 很满躬,即 R(17-A) +X,从南 N (1,17-A) + 6)故 N(A) 入为特谱点

定理设A∈C(X),则 丁(A)无非零聚点。 Roof. 设入的为 TA的 的一个栗点,则存在直异角点到 [M] and 使得 An → Ao, 由 An ET (A) 和 An ETP (A) 设 Xn ∈ N(AnI-A) (Yh>1), 断言: (xn) (科大夫, 设对于 (Xn) 新成之, 则对于比比·反射(加) 体性相关,则通识活 便得 Zinpixi =0 R)一方面 Zin Fi Akm Xi =0 お- 方面 A(互序ix) = 豆芹ハixi=0 从而有 区际 (入i-入km) Xi=0 而 (入了一入大小) \$0 ,由 {XSin 纤维无关知 了;=0 lsikk 迪品 Pkn Xkn=0 → kn=0. 故 (xi) 舒性无关. YAN, 记 En= gen (xisis, 则由(xi) 54 性无关友 14-1411 E B & & ... & E & ... 并且(E) 的有限组,从而为X的闭子管闭、填Piesz引理 知甘加川,∃从使得. yn ∈ En , ll ynll=1 , dist (yn, Fn-1 > 1/2. 从而由AEC(知及「例)C Bx知 (Ash) 有收敛于列 而 (An-I) En C En+ 放 ∀m>n. 1 Axn - Axn 1 = | xn (xn - A) xn - xn (xn 2-A) xn + xn - Xn |

) dist (Xm, Em,) > { (*)

故若入m→入赤。则由{TXn}子训{TXnk}饮敛知 【片TXhe }收敛,从命 Caushy,这号(的矛盾! 定理报入+0, A∈Q(X),则∃10×1使得 N (XI-A) no = N (XI-A) notj Boof. 反设 Yn≥1, En 年5mm En= N (Al-A)h. 女中 3 刚 电AEC(划在 En 为阴泉,由影应定理, Ma) Xn ∈ Ene, dist (xn, En-1) 7%, ||Xn11=1 从市田AEC(X)及 {Xn}C BX知 {Axn}有收敛子例, > dist (xm, Em) - [] > \(\frac{1}{2} | \lambda | 矛盾!从而习106及使得 N(AI-A) = N(AI-A) non 从而 Y XE N(JZ-A) Ma+2 $(NI-A)^{hot2} \times = (\lambda Z-A)^{hot1} (\lambda Z-A) \times = 0$ ⇒ (AZ-A) x ∈ N(AZ-A) hot1 = N(AZ-A) ho => (AZ-A) "Lat x @=0 => x E N (AZ-A) "To T = N (AZ-A)" 12数学13约法易知布题成立。 定理设入+0, A∈C(X),若∃1/6 ≥1 使得 N()1-A) no= N()1-A)hoti W/31

Summary

M N(AI-A) NO P (ALA) No = {o}. Boof. ∀x ∈ N(XI-A) no ∩ R(XI-A) no, M.] = y ∈x

 $(\lambda I - A)^{n_0} x = 0$, $x = (\lambda I - A)^{n_0} y$

⇒ (λ7-A) y=0 ⇒ y ∈ N (λ2-A) 2h = N (λ2-A) 1h $\Rightarrow X = (\lambda Z - A)^{h} y = 0$

从帝 N(11-A) 1 R(11-A) 10=fo).

定理:设入+0, A∈C(X),若∃No>1 使得

N(XI+A) "= N(XI-A) "+j>

M X= N (AI-A) Ma R (AI-A) no.

Prof. dim N(AI-A) > < +00, 故记 (eil lin 为 N(AZ-A) 的 的-组基、台门二、CX*满足

 $f_i(e_i) = \delta ij$

MA YXEN(AZ-A) x = I fixei

考虑 望子: T: × → ×

X >>> Ifi (x) ei + (x)-A) To x

则T € C(X),故 R(T) = X ⇔ N(T) = (4),由题设条件 欠N(AI-A) 10= ∩ R(AI-A) 10= fol, 放 ∀× EN(T)

I fi(x) ei + (x1-Ab) x=0

=> If ixe: = - (AZ-A) = x E N(XZ-A) = 1 R(XZ-A) = .

MA ZFIKIPI = - (A]- A/ x =0 => XEN (AZ-A)n.

故 X= Z fi(x) ei = 0 从录 N(T) =0 D. 田教学日纳法, 在 1414 人 成花 刚对 14 角 CUE $X = (\bigoplus_{i=1}^{m-1} N_i) \oplus (\bigcap_{i=1}^{m-1} R_i)$ 定理:设A∈C(X),λ+0,则∃ No 6250 使得 N(AI-A) PO R(AI-A) DO = X. 19 Rj = R((Aj-A)) Nm) @ R((Aj-A)) (Rm) 定建设AEC(X) I则 YEX 存在至多有限个(Xil) in COTA) = Nm + A (Rj n Rm). 及机门间便得 MA X= (⊕TNj) ⊕ (∩TRj) 下证团式成立,事实上,由((xi-x) ni, (xj-x) ni) =1 为 1 | 1 | 1 | 1 | 1 | 0 Q. $X = (\bigoplus_{i=1}^{k} N(\lambda_i \mathbf{1} - A)^{k_i}) \oplus (\bigcap_{i=1}^{k} R(\lambda_i \mathbf{1} - A)^{k_i})$ $km(\lambda i 1-A)^{ki} \oplus km(\lambda j 1-A)^{nj} = km(1) = \{0\}$ ③全M=∩FR(AiI-A)Ni,则∀XEC满足1X13E Ø. ∀ |Sisk, ₫ λ1-A = (λi1-A) + (λ-λi)I $\frac{\partial}{\partial r} \left(\lambda - \lambda i \right) \frac{1}{r} \left(R(\lambda i 1 - \Delta)^{n_0} \right) = R(\lambda i 1 - \Delta)^{n_0}.$ 有:M为 JI-A 的不变子空间且入为AIM (1-A)(R(xiz-A))=R(xz-A))+++ 的正则点 Boar ①由于 J(A) 尺以O为栗点,从而 SR (XII-A) no 5 #({ [X] > ES n T (A)) < 00 从而 (x1-A)[R(xi1-4)ⁿi) C R(xi1-4)ⁿⁱ ②.由于 ∀ leiek, ∃ni ∈ Zo 使得 故 (12-4)(M) E () RIA; Z-A) Ri = M. $X = N(\lambda i I - A)^{hi} \oplus R(\lambda i I - A)^{hi}$ M M D = M = M D B R (从了-A) hi 约为闭飞汽间知 M 为 X 的闭子空间 老记 Ni=N(xi]-A)ni, Ri=R(xi]-A)ni 且M为入了-A被子空间,由A∈C(X)知AM∈C(M) 故入∈P(Alm)⇔ N(由n)=fo) か X= Ni BRi , 若式 Ni (NI -A) hi A Nj (Ni 2- A) hi titi 卷入车 {\ishin , 见1 由入∈P(A)知 成立,则 Ni CRi,从南 $N(6\lambda 7-A) = \{0\}$ $\not = N \cdot \oplus P_1 = N \cdot \oplus R((\lambda_1 - A)^{n_1} | M_1) \oplus R((\lambda_1 - A)^{n_1} | R_1)$ 故 N(x2-A)(m) = N(x2-A) n M = {0} = N. ONZ O (RIORZ) (AMA) MA XEP(AM) 3 Summary Summary 3 3 0

$(\lambda 1-A) \times = 0 \qquad \times = (\lambda 1-A)^{h_0} y$ $(\lambda 1-A)^{h_0+1} y = 0 \Rightarrow y \in N(\lambda 1-A)^{h_0+1} = N(\lambda 1-A)^{h_0}$ $(\lambda 1-A)^{h_0} y = 0 \Rightarrow N((\lambda 1-A) _{\mathcal{K}}) = \{a\}$ $(\lambda 1-A)^{h_0} y = 0 \Rightarrow N((\lambda 1-A) _{\mathcal{K}}) = \{a\}$ $(\lambda 1-A)^{h_0} y = 0 \Rightarrow N((\lambda 1-A) _{\mathcal{K}}) = \{a\}$

CUE 由Hahn - Barrach 定理, 王 (ei) C X 使得	0		
file)=dij, X= mm{e;}, + nikmfi	0)	CUE	设 I of fi = 0, 网
MAP codim R(A]-A) = n = dim N(A]-A')	0)		0= (2元difi, ei) = di sisa. ルカ di= = dn => る fo 年 R(x7-以), OE R(x7-以)
推述设入《C(fos, A C(X), M)	.0)		从市 di=…=dn=5 rip Jo4 人人人 知 So+0,从市 do-00,故 与清流 体性无关。
dian N () () - A) = coodin R() 2 - A) = dian N() 2 - A')	0) 1		年 50 ≠0, 从市 do m, ox UIIImo ②. Span (fill) ↑ R(AI-A') = {3}
= cod in R () 1 - A')	0)		Q. Span (3150 M) R(127-A), R(1 3 k);
定理设入 ∈ C\[o], A ∈ C(×), A'为A前 Bonach 共轭算子			f=I6f; ∈ R(AZ-A), \(\frac{1}{2}\) N(AZ-A)
则有	0		to y y ∈ N (>Z-A) A
Φ. N(λ] - A*)= R(λ]-A) [⊥] .	9		(f, y> =0
	0		特别地, 和 y=e; (lei ≤ n), R·1有 故; =0 (lej ≤ n),从序
$\Theta. N(\lambda_1 - A) = R(\lambda_1 - A)^{\perp}$	0 9		f= kofo, 而由 f∈ R(A1-A')知能0, 甚不然
	3)		fo E R(A7-A) 方局. 从市
Bof. 只需证明 N (AI-A) CR(AI-A')	3		codin R()2-A" > Nt1 > n= dim N()1-A)
反设 R(λI-A') ≨ N(λI-A) ¹ ·	3		但 codim R [A]-A] = dim N (A]-A) = dim N(A]-A) 予局!
育児 (A-[(A) A / (A-[(A) N → 分E N	3)		
<.a. y> ~ ∀ y∈ N(J-A)	9		
由A C(x), x +0 长 din N (XZ-A) = n < +00, 元 (e)			
为 N(AZ-A)的一组基则目(fishin便得	3 0		
$f_i(e_i) = \delta ij$	9 0		
● 舒治。好性无关.	3 0		
Summary	3 0		
	9 1)	
	9 0)	
	3 0)	
	9)	

CUE	3	CUE 内积空间.
	3	定义版 H 为 C 上的焦性 定间 , 若 Y X y o C 化 , 都对这 一卷
personal section of the second of the second	3	(×y) ∈ € ; 满足
	3	Q. (x, x) > (x, x) = 0
Service An Warra Day		(x, y) = (y, x) ∀ x ,y ∈ \(\mathfrak{H}\).
		(LX+ By, Z) = L(xZ) + β (yz), YU, F∈ C, XYZ ∈ FP.
		Remark: ∀x,y,z∈\$l, dif∈C
		(x,2y+pz)= Z(x,y)+ p (x,z)
	3	例: 死为n组行也空间 leil 为一组末,∀x,y∈死。
Same on the second of the seco	3	X= \(\times \times \); \(\text{y} = \times \); \(\text{R}_1)
		$(x_1y_1)=\sum_i x_i \overline{y_i} \Delta_i \qquad (\Delta_i>0)$
		为农上的一个内积
		例:设(Q,从)为测度空间, P(X)20 on Q, 图
Manager are - By to the grown of the and Regard By	3	¥5,3€L'(Ω,μ).
	1	(f. 3) = Se fro Too produm
	1	为广上略一个内状
	3)	文理(Quory-Schartz)设现为内裁管间,则 Yx yé fl
	3)	((xy)1 € (xx) (y,y)
	1	等号成立当目反当结性相关
	•	Bod. YXEC, YX, YETE, A
Summary	1	Summary
	1	3
	•	3
	0	3
	0	•

05 (x+2y,x+2y) = (x)+2Re(x(xy))+121-(9,4)	3)
取入=-(x4)时得.	3)
定理。(PC,(·,·)) 为内袱空间 Yx eFC 定义	3)
$ x = (x, x)^{\frac{1}{L}}$	3
则则为别的局个范蠡	3
定理的程度性的 创为的报前 则	3
$x_n \rightarrow x$, $y_n \rightarrow y \Leftrightarrow (x_n, y_n) \rightarrow (x_n, y_1)$	3
定义:完备用内衣空间教者 Yilbon 空间	3
定理:内积空间开的完备化空间为Hilbant空间。	3
Ref 设行为内积空间,则其也为赋艺线世空间,从而	3
存在完备在空间和、∀x, y∈乳,3{xNcH,)
{YnS c li 为 Gaussy 列使得	•
$x = \{x_n\}$, $y = \{y_n\}$	•
定义 (x, y) = him (x, yn)	
①定义合理性:∀n, m 利有	9
(xn, yn) - (xn, Jm) \le (\&n, yn-ym) + (xn-xn, ym)	,
	1
→o as n, m→no	3
从而 {(xn, xn)}在 C + Cauchy, 从而存在.	3
老 {xn'} = (xn), (yn') = (yn))
)
)

Summary

 $(x_n, y_n) - (x_n', y_n')$ = 11xn-xn1111yn1 + 11xn1111yn-yn-11 →0 as n> 从而(,)与(XX)的选取无关 ②(·,·)为内积 结性性由内 积的双纤性性层 极限的转性性深记 只需整证 (x,x) =0 台 x =0. ∀x={xn}, (x,x)=0, 故 0 = lim (Xn, xn) = lim ||xn|) MA Xn ->0 BY X=0 ②(:,:)限制到 H上与原始所定的的相同 $\forall x \in \mathcal{H}$ $||x||^2 = \lim_{n \to \infty} ||x_n||^2 = \lim_{n \to \infty} (x_n, x_n) = (x_n, x_n)$ 灾理(校)(恒等式)设咒为农上的内衣空间,则 ①当K=KBA (xy)= 4(||x+y||,- ||x-A||,) ②当1k=CA+(x,y)=本(11×+311-11×-311+11×+ig11-11×+ig11) 定理题 英线性空间可引入内拟 当且反当 11 x + 311 + 11 x - 311 = 2(11x11+11411) \ \text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitit{\$\text{\$\tex{\$\texit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{ Proof =" ∀xye 代有 11x+y12+ 11x-y12 = 11x11+ 2/20 (xy)+11y11 +111/1-2/20 12411+111+

= (11 x11+ 11911)

Summary

			1
UE	"⇒ ふ姑後 K=R, 定文	0	
	(x, y) = \$ (x+y - x-y)) \very \empty \text{\$\pi_x \neq \empty}	0	
	剛(x,y)=(y,x)星然,(x,x)=本版(1 = x =	0	
	故(x, x) ≥ o, (x, x) = o ⇔ x=0.	17	
	¥ x, y, ₹ ∈ ₹,	0	
	4((x, x) + (y, x))= (x+2)2- 1x-2 12+ 1y+2 12- 1y-2 2	9	
	= 2(X+y+27 2 = 1 X + y 1) - 2(X+y-27 1 + x + y 1		
	= 국 (비졌나의, - 비졌는의,	1)	
	$= 8 \left(\frac{X+Y}{L}, Z \right)$	1	
	$\Rightarrow (x,\xi) + (y,\xi) = 2\left(\frac{\lambda y}{2},\xi\right)$	9	
	全 y=0 得	0	
	$(x,\xi) = 2\left(\frac{x}{2},\xi\right) (x)$	0	
	々 X=X+y 有	9	
	(x44, 12) = 2 (x47/2 , 2) = (x, 2) + 14, 8).	0	
	对任表给定的x, y, 令	0	
	fu) = (tx, y)	9	
		"	
	是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	9	
	数 fla) = a f(1)	1)	
	从示 (ペメ, 生) = ペ (2, 生)	0	
		0	

CUE 正规正支集与正规正支基 定义设化为内拟层间 ①. 若 (x, y)=0,则称 x 5 y 正支, 记为 X → 3 0 x∈ 9l, Mc9l, ₹ (x, y) =0 + y EM. MAX X S 从 Lto, 花作 X 上 M. @设 M, NCR, 老 (x, y)=0 YxeN, yem. M放M与N正交, 抗作MIN. @ M C & , M 的 政科 定义为 M = [x: (x, y) =0 & y ∈ M]. Remark. Q. x + y 6) y 1 x 8. x 19€ X =0 ⊕ X1 y1, X1y2 ⇒ X1(xy, +py) Ya, p∈C Sx1yn (4n), yn→y => X1y Q. X∈ R, MCR, XIM => X¢ Span M

OM, NCR, MCN => N+CM+

OM COL MAM = { o OFM

Summary

CUE	文理: 配为为秋空间,MC配识别MJ为M的闭铁性	3	
	子中间且有 M = (span M) = (span M) 1.	3	9
	Bof the M & Span M c Span M to	0	1
	M+ > (gam M) + > (span M) +	0	3
	A x eWT M	0	3
	(x, y) =0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	3
	May yy z em, a, peC	0	3
	(X, dy+ pz) =0	0	3
	> × 1 span M. Y y ∈ spanM, 3 yn ∈ spanM	0	0
	使得 如分的 但	•	5
	$(x, y_h) = 0 \Rightarrow (x, y_1) = 0$	9	1
	=> M1 = (Span M) 1	3	1
	V « FE € , V xy E M1	3	4
	(X, E) = (y, E) = 0 YENGEN	0	0
	=) (wx + By , z) =0 ∀ ₹ €M.	0	1
	\$ Xn∈M1, Xn→x, Phy	0	1
	$(X,Z) = \lim_{x \to \infty} (x_n, Z) = 0$ $\forall Z \in M$	0	
	定义:森内我定间别中一枝元素(的)证为正交集之)	1
	(6:'6!) => A!#!	0	1
	森(ei) 为正规正支集,若 (ei, ei)=δij·若	01	
Summary	これが、 を (ti)引きの : **	01	
		0)	
		0)	
)	
		-	

(ei, x)=0 4161 => x=0

別報 feis为完备的.

定理:任何非零为狱室间公存在完备正交集.

引理:设(ei}↑为内状党间别中一个正规正文章,別 ∀xe别

 $\| \sum_{i=1}^{n} (x, e_i) e_i \|^2 = \sum_{i=1}^{n} |(x, e_i)|^2 = \|x\|^2 - \|x - \sum_{i=1}^{n} (x, e_i) e_i\|^2$

Proof 只需注意利

 $\sum_{i}^{n}(x_{i}e_{i})e_{i} \perp (X - \sum_{i}(x_{i}e_{i})e_{i})$

李文上

 $(\Sigma_{i}^{n}(x,e_{i})e_{i}, \chi-\Sigma_{i}^{n}(x,e_{i})e_{i})$ $= \sum_{i=1}^{n} (x_{i}e_{i})^{k} - \sum_{i=1}^{n} \sum_{i=1}^{n} (x_{i}e_{i})(x_{i}e_{i}) (e_{i}e_{i})$

由勾股定理立得

推拔(Bessel inequality) 沒 {ei} b 和(内积空间)的正规正文 東, MYXEORÁ ITICXei)/ ≤ ||x||. Yn 定理没fesien为配中的一个正规正交集,则 Yxe 死

{cx,ei):ie1}中有至多可数个不知の,且

I [(x,e;)] ≤ ||x||

Proof its Fn = { &, e;) : |cx,e;) > # }, 81

{(x,ei): (x,ei) +0} = U, Fn

则Fn均为有限集,老不然习N31.4Fn=50,则

Summary

CUE

In (xei) = 50 # - 0 与 ||x||* ≥ ∑ | |(x,e;)|* 矛盾、故 {ex,e;):(x,e;) ≠03 氧更多 可数个元素. 从而可书莫排列为 (x,e) e > (x,e) 3 -- 3 (x,en) 3 --故 Iie1 (x,e;) | = 豆で (x,en) に = lim Z' ((x, en))2 < ||x||2 定理:很fessie 1为Hilbert空间架中一个正规正交集,则 YXEX 有 I ieI (x,ei)e; e孔且 I; (x, e;) + ||x - I (x,e;)e; || = ||x|| Proof.由于并{e::(x,e;)≠o,i∈1}≤於,从而可将{ei;i€1排 列为 lensin 满足 (x, en) > (x, en+1) \ h >1 由 ∑ 1 (×, en) 1 ≤ || x| 1 元 1 (x, en) en 维对收敛,从亦由 9C完备知其收敛而由于 ¥n≥n有 In (xei) + 11x - E(x,e;) +: |1 = ||x|| 两侧令 n→∞ 即得 定义:在内状空间犯的一个正规正交集为基,老 X = ZiE1 (x, ei) ei +x E 88 史理: 歿 8= {6:}ie]为Hilbort空间中的一个正规正交集,则 下述结论等价。

CUE

① S为纪的一组基

② S完备

③ Parseval随等式或立: ∀x∈ 光有 I;eI(x,ei)| = ||x|| * ||x||

(x, e;) =0 ∀ j ∈1

有 $\frac{(x,e_i) - (x, x = \sum (x,e_i)e_i = 0)}{(x,e_i) = 0}$ 以 $\frac{1}{2}$ S克省

②→③.由引理和: ∀x∈代. ||x|²=||x-∑(x,e;)e;||²+∑|(x,e;)|^c

₹ ∀ e; (x, ∑(x, e;) e;) =0

故由 8 完备和 x-∑(x,e;)e; =0,从市 Borsewi成立 ③→①由 ||x||= ||x-∑(x,e;)e;||+ ∑((x,e;))|

过即得到.

定理任何非零Hilbert空间及有一组正规正交基8,进一步若罗巴可分,则8可数

Boof没S={eisi∈1不可数,刷

||ei - ej || = NE

∀i ≠i

由下跌引卫之行。

Lemma. 设入为度量空间,甚且8000及BCX不可数满足 ∀xiy∈B, x+y ⇒ d(xy)≥ 80

Summary

Summa

Summary

CUE

CUE	別X不可分。	(0	
OUL	定理(正支授影定理)设M为Hillam空间外的闪子空间,则	0)	CUE Riene 表示定理自Lax-Milgram 定理。
	R=MOM_	0)	文理(REDZ表示定理)设咒为 Hillamo 空间,则 Y fe 光*,有在唯一
	Profit M为别的闭究间和M也为知知时空间,故有	0)	的よ∈帐使得
		0)	f(x) = (x, y) 11 y = 11 f 1.
	正规正交基(eiliei , M) ∀x∈90	0)	Poof. 差 f=0, 则取 y=0, 下设 f +0, 则 Kmf +96, 添由feale
	x = \(\tau_{\chi_1}\)e; + x - \(\tau_{\chi_1}\)ei	0)	知 Kenf 为 犯的闭子空间,故由正交投影定理知
	€ M + M ¹	0	Ho = (Keng) ⊕ (Keng) ¹
	希MnM2= (3)显然,故别=M⊕M1.	0	取LE 9e\Kmf, 且flus +o, 故∀X∈ 9e有
		0	x - \(\frac{\xi_{(n)}}{\frac{\xi_{(n)}}{\xi_{(n)}}}\)u. \(\xi_{(n)}\)f
		0	> Thue 91\kmf C(kmf) ± 1/2
		0	$(x_{\overline{j}}, \frac{f(x)}{f(u)}, u, u) = 0$
		0	RP有 Sw) = Siny·(×, い) ∀×∈動化
		0	By y = Sinyle/cu, u, I
		1)	$f(x) = (x, y) \forall x \in \mathcal{Y}$
		0	下证明=11411.一方面
		1)	15w 1 = 1 (x y)1 ≤ x -1/y 1 \(\times \)
		1	从而 到 5 划 ,另一方面,由 \$1的构造立即得到
		1	11 y 1 = 1 flui / / / / /
		9)	练上看: sh= sh. · 唯- 祖身证.
		9)	定理(Lax-Milgram定理)设化为Hilbert空间。φ:94x9(→C fi)
Summary		9)	Summary
		3)	
		3)	
		1)	•
		M	•
		_	

· 中(以大声以,之) = 以(p(x,之) + 声(1/4,之) · 中(z,以大声以) = 文(中(z,以)+ 戸(之り) ② I M B O 使得 ** 以 e 発有 中(別) < M x ・ な .	从命 A 似字中記) = & Ay+ p AZ 且度 (筋育界 性
· 中(以大野以,之) = 以(p(x,之) + 声(14,色) · 中(ス,以大声以) = 及(中(ス,以+) 戸(之,り) ②ヨMさの使得をx, yを発有 中(例) < M x 、 な .	Ax '= (Ax,Ax) = (Ax,x) ≤ M AX · X 数有 AX ≤ M· X 即 A∈足(96).
· ヤ(z, xx+βy)=又(q(z,x)+戸(z,y))) ② M N O 使得 xx y E 発有	M AXI· XII 数有 AXI ≤ M· XIII A∈ L(96).
②∃M≥0使得∀x,y∈%有	数有IIAXII × M·IIXIII AE足(死).
4(×) ≤ M x . 4 .	数有 AX < M· X 町 AE足(乳).
	112 HECOD* FINER F(x)= P(xy) (Xx)
港中在N上是强制的,即∃N>0 使得	Wab Alego 1218 and 2
1402×1, 3 N 11×11, Axe 89.	⇒ Vu∈H, JIYEH (x,u) = (x,Ay) (H)
M ∀ f ∈ 90 *, ∃ y ∈ 96 使得	⇔ Yu∈U, Jiy∈Jl, U=Ay
$5100 = 9(\times, 1)$ $\forall \times \in 96$	⇔ A为 化上的双射
Roof - 为面用Res表示定理,Vfe 96*, 3 lue 96便	又需证明A为反射即可、由Q在K上强制行
$\mathcal{E} \qquad \mathcal{E}(x) = (x, u) \forall x \in \mathcal{U}$	16(x'x) S N x , A x ∈ A.
	⇒ N x * (x,Ax) ≤ x · AM \ ∀x∈06.
RID 194(x) 5 Miluli (kg)	SF > X \ IKAII > IKIIN <=
知 9n ∈ 9c*, 故存在唯一的 17 ∈ 94 使得	故A为单朝,又没 {xn} < 引 满起
$\varphi(x) = \chi(x) = \chi(x)$	$Ax_h \rightarrow y_h$
	Ry (Axn) (auchy => {xn} (auchy,从市日Xe的
映射为为并纤维質子. 事实上 ¥ x, y, ₹ ∈ 乳, 以序 ∈ C	$\times_{h} \to x$
有 ((x, xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	不AEX(Ab),故Axn→Ax从济Ax=y,故R(A)为
	乳中的闭集,放出正交投影定理为
Cumpage	& = RIA) @ RIA)
Cummani	
Summary	

CUE RI V X € RIAL 有	CUE dilbon+共轭算子.
(x, Ay) =0	量处设 961, 962为 Hilborn 空间, A ∈ 足(Be, 1, 962), 别存在
特别地歌 3=2、别	唯一的 B ∈ 足(光2,光1),使得
$0 = \psi(x, x) = (x, Ax) \geqslant l(x)$	$(Ax,y)=(x,By) \forall x\in \mathcal{H}_1,y\in \mathcal{H}_2$
⇒ 放育 R (A) = {0}	则称B为A的Hilbert共轭算3.记为A*
故 RIA)= 乳、至此命越得证.	宣独设 (161) 第2, 第3为 C上期 4116m1空间, A18∈ 之(961, 162)
	C∈ L(82, R3).A.
	D. Yx, BEC, A, BEL (96, 36)
	(WATEB)* = ZA*+ \(\overline{F} \) B*
	3. A* * = A * = AA* * = A*A
	◎若 A 有界可逆,则 AY有界可逆且
	$(A^{\dagger})^{-1} = (A^{-1})^{\dagger}.$
	Bet O. V XE H, ye Ho
	(A** x, y) = (A* x, A* y) (x, A* y)
	$= (A^*y, x) = (y, Ax)$
	= (Ax, b)
	D. ∀ x, β ∈ C, A, B ∈ L (%, 36.) A
	$((xAt\beta b)^*x, y) = (x, (xAt\beta b)y) = \overline{\alpha}(x,Ay,t\overline{\beta}(x,By))$
Summary	Summary

CUE	= (\(\bar{x} + \bar{p} \bar{x}\) \(\tau, \gamma \)	3	DE 由(E) += 8*(* 治
	Q. 4 ×6 H2, y∈ H,	5	$\Delta^*(\Delta^*)^* = (A^*)^* A^* = 1^* = 1$ as
	$(A^{3}x,y) = (x,Ay)$)	从冷 A*可謹 且遊为 (A*) * = (A*)*
	改一方向 , 取y= A*※	5)	灾据设备为CL的从16m时间, A ← 足(H6) (M)
	(A*x, A*x) = (x, A(A*x))	0	ρ(A*)= {\(\bar{\lambda}\): \(\lambda \) \(\sigma \) \(\bar{\lambda}\) \(\sigma \) \(\lambda \) \(\lambda \) \(\sigma \) \(\lambda \) \
	≤ lval. [[A¥ \$n]		Box \$ X ∈ P(A) ⇒ XZ-A TE ⇒ (XZ-A)* TE
	UAN > IFAII (CHILIAII > IK * A II (C		$\Re_{\lambda^2-A}^* = \lambda^2 - A^* \Leftrightarrow \lambda \in p(A^*)$
	另一方面, 東 X=Ay, 刷	5	另-方面, λ∈ρ(A*) ⇒ λ1-A*河道
	Ay 2 = (A*(Ay), y) = A* A y	9)	→ (λ2-A*)* = λ2-A +
	⇒ IlAy 10° ≤ Il A Fullyu ⇒ II A F II ≥ IlAn		$\exists f \ \lambda \in P(A) \Leftrightarrow \ \tilde{\lambda} \in P(A^*)$
	故 A = A ^N .		We N € P(A) € T € P(A*)
	又∀x,y∈%,有	7	BY A∈ σ(N €) Ā∈ σ(A*)
	$(A^*Ax, y) = (Ax, Ay)$		灾理·据为企上的从旧城间, A∈是(积), x为为在舒征值
	€ X= y, R.	73	入的特征向里,与为对应于从那行犯向置,则
	1K (K) (A*A) > 1 x A]		λ + μ ⇒ (x, y) =0.
	=> A = A*4 = A		Buc. $\lambda(x,y) = (\lambda x,y) = (\lambda x,y) = (x,A^*y)$
	Um HAIP = MAYAN, FITE HAAY 11 = HAYII.	5	= (x, µy) = \vec{\varkappa} (x,y)
	((CB)* x,y) = (x, CB y) = (C* x, Bb)	0	(λ- μ) (xy) =>
	= (B*C*, x,y)		申 (x-以) → 0 乗 (x y) → 0.
	⑥该 A有界可懂,则 AAT = ATA=I	0	定理形貌, 兆力 €上路川加州省间, A €是(粉, 粉), 月, 人
	EL TUTTE LE LE LA DELLE	0	Summary
Summary	0		

在 2.1 线性同构 B: 始 →	CUE
Summary	Summary

CUE	(x-x(he), y) = (xi-x(he)) (yi) (xi-x(he)) (yi)		=(PMX, PMY) + (PMX, Y-PMY) 示 PMX eM, Y-PMY eM [⊥] , 药 (PMX, y) = (PMX, PMy) 同理 (X, PMy) = (PMX, PMy), 故 PM [*] = PM. 推论: 96, 962 为 Hilbart 空间, 例) A = C(961, 962) 会 A* ∈ C(962, 961) Bood: 只证明企要性, 私分性由A**=A 立得. 事实上商日 A* - A*PM = A* - A*PMM = (A - PMA)* = A - PMA 及上ケ定理立即得利. 定理: 设 A 为可分Hilbart 它间上的全连设算子,例 → Millary 定理: 设 A 为可分Hilbart 它间上的全连设算子,例 → Millary 2 2 3 4 4 4 4 4
Summary	知 A(BBB,) 为到累集,从而完生有界,故∀ESO 在在 A(BBB,) 的 是- 网 (X/i) ; , 所 ∀ x ∈ BBC, 日 x; 使得 Ax-Ax; < 是.		A* - A*RM = A* - A*RM = (A - PMA)* = A - PMA 及上ケ定理立即得利. 定理: 设 A 为可分Hilbar中间上的全连设算子,则 ∀n≥ 有有限教算子An使得 An-A → 0
Summary		3	Summary

Pres	東文輝子 An X = ∑「(Ax,ei)ei, MA有安科 樹言: An - A → 0。 岩不然,反设 3 & > 0 及 (An)子列 (Ame)使得 Ank - A > & 6 从而 V k > 1, 习 x k ∈ B g 使得 (Ank - A) X k > 多 由 A ∈ C(3k)知(Axe)有 收敛子列,不妨伤记为 (Axk), 设 Axk → y as k → ∞ M (Ank - A) x k ≤ ∑ (Axk - y,ei)ei + ∑ (y,ei) e → 0 子盾。 理 现 % 为 C 上 的 Hilbert 空间, A ∈ 足(20 96) ①。 N (A) = R (A *) ¹ ②、N (A) ¹ = R (A *) ②、N (A *) ¹ = R (A *) ④ N (A *) ¹ = R (A *) £ 由 Hilbert 空间 自反及闭值 顶定理 立 得。 文: 96为 Hilbert 空间, A ∈ 足 (96) 甚 A = A *, 称 A 为 ** ** ** ** ** ** ** ** **	CUE	对称算子。
Summary	3	Summary	

A = A A	DE 由A ∈ C(96)名 ∃ {\mu_k} C {\mu_k}
---	--